Search results for "ynchronous motor"
showing 10 items of 52 documents
Experimental study on efficiency enhancement in Interior Permanent Magnet Synchronous machines
2015
This paper presents an experimental study on the efficiency variation occurring in an IPMSM (Interior Permanent Magnet Synchronous Motor) with respect to the direct axis current component and for several working conditions. Such investigation is the starting point for the arrangement of a speed control drive system equipped with a real-time power losses minimization algorithm. More in detail, a test bench is set up to carry out the measurements needed for the final power loss identification. The experimental investigation is developed by performing tests at different speed, magnetization and load conditions. From the obtained results, it can be stated that the IPMSM efficiency can be maximi…
Sensorless control of PMSM by a linear neural network: TLS EXIN neuron
2010
Sensorless vector control applied to the Permanent Magnet Synchronous Motors (PMSMs) is a very challenging subject. It permits obtaining high dinamical performance by exploiting increased reliability and also reduced cost. Among the different methodologies proposed in literature, a model based approach has been proposed here. In particular, the space vector equations of the PMSM have been re-elaborated to permit the use of a Least Squares technique. The problem has been then faced-up to with the so-called TLS EXIN neuron, which is a linear neural network able to solve the TLS problem on-line. Simulation tests have been done on both interior mounted and surface mounted machines.
Experimental test on a fuel cell powered brushless synchronous motor for automotive applications
2014
In this paper, a fuel cell powered motor emulator is proposed. The MATLAB/Simulink model including the fuel cell stack, the motor and drive models is described. The Urban Driving Cycle test is performed in MATLAB environment. Effective operating conditions of the whole fuel cell powered motor are accurately emulated according to actual regulations in force. The emulated current profile is used for experimental tests on a 5kW Nuvera PowerFlow stack. Thanks to the proposed approach, the motor and inverter drives are accurately emulated and the provided test-bench is used to evaluate performances of the stack under test for automotive applications. Simulation and experimental results are compa…
Integrated Mathematical Model of Proton Exchange Membrane Fuel Cell Stack (PEMFC) with Automotive Synchronous Electrical Power Drive
2008
In this work, the mathematical dynamical model of a PEMFC stack has been developed and implemented in Matlab environment. Lots of simulations have been executed in two different load conditions. Firstly with a resistive load and finally with a synchronous electrical power drive in automotive load conditions. The innovation in this field consists in the integration in PEMFC stack mathematical dynamic model of a synchronous electrical power drive one for automotive purposes. As regards the simulations with a synchronous electrical power drive, the complete mathematical model allows to evaluate the PEMFC stack performances and electrochemical efficiency. This represents a useful design tool.
Field Reconstruction for Modeling Multiple Faults in Permanent Magnet Synchronous Motors in Transient States
2021
Conventional field reconstruction model (FRM) for electrical machines has proved its main strength in efficient computations of magnetic fields and forces in healthy permanent magnet synchronous machines (PMSM) or faulty machines in steady states. This study aims to develop a magnet library of different magnet defects and include inter-turn short-circuit (ITSC) in the FRM for PMSM. The developed FRM can model a combination fault between ITSC, and magnet defect in a PMSM in transient states. Within the framework, an 8-turn ITSC was modelled in both finite element analysis (FEA) and FRM, and then identified by the extended Park’s vector approach. The air-gap magnetic field reproduced b…
Evaluation of the power quality from a seawave power farm for different interconnection schemes
2007
In this paper we present an approach to the interconnection of a seawave power farm to the grid The generator type used in the farm is a Permanent Magnet (PM) linear generator driven from the seawaves that generates, therefore, highly distorted emfs. We propose and compare two possible ways to interconnect the farm to the grid. One is based on an approach where for each generator there is a conversion subsystem that permits the direct connection of each generator to the a.c. network, the other one is based on an ac.-d.c. converter that is connected to the generator, the converter is connected to a dc link that can receive the power from every unit and that can supply a dc-ac converter direc…
A Simulation Analysis of VSM Control for RES plants in a Small Mediterranean Island
2020
The paper presents an application of Virtual Synchronous Machine control for managing inverter-interfaced renewable energy sources in a small Mediterranean island not supplied by the main grid. In the proposed analysis, the island's renewables-based generators area assumed interfaced to the grid by voltage source converters with a swing controller and a vector-current controller with two different options for the reference current for regulating the voltage at the Point of Common Coupling and the active power output. The system, modeled in PScad environment, allows to verify the response of the renewables-based generators with VSM control in the presence of a fault in the grid.
Improvement of IPMSM performance through a mixed radial-tangential rotor structure
2010
In this paper an IPMSM (Interior Permanent Magnet Synchronous Motor) rotor configuration optimization is proposed in order to increase the performances in terms of torque, limiting at the same time the rotor leakage flux. The final mixed radial and tangential rotor configuration here proposed and described determines a reduction in PM material quantity of about 25% compared to a tangential IPMSM one with the same dimension and weight, together with an increase of the motoring torque of about 50%. Some simulation carried out by using a FEM software and a comparative analysis with two traditional IPMSMs rotor configurations show that a significant improvement can be achieved with limited chan…
Detection and Discrimination of Inter-Turn Short Circuit and Demagnetization Faults in PMSMs Based on Structural Analysis
2021
This paper presents a fault diagnosis method based on structural analysis of permanent magnet synchronous motors (PMSMs), focusing on detecting and discriminating two of the most common faults in PMSMs, namely demagnetization and inter-turn short circuit faults. The structural analysis technique uses the dynamic mathematical model of the PMSM in matrix form to evaluate the system’s structural model. After obtaining the analytical redundancy using the over-determined part of the system, it is divided into redundant testable sub-models. Four structured residuals are designed to detect and isolate the investigated faults, which are applied to the system in different time intervals. Finally, th…
Efficiency Enhancement of Permanent-Magnet Synchronous Motor Drives by Online Loss Minimization Approaches
2005
In this paper, a new loss minimization control algorithm for inverter-fed permanent-magnet synchronous motors (PMSMs), which allows for the reduction of the power losses of the electric drive without penalty on its dynamic performance, is analyzed, experimentally realized, and validated. In particular, after a brief recounting of two loss minimization control strategies, namely, the "search control" and the "loss-model control," both a new modified dynamic model of the PMSM (which takes into account the iron losses) and an innovative "loss-model" control strategy are presented. Experimental tests on a specific PMSM drive employing the proposed loss minimization algorithm have been performed…