0000000000000274

AUTHOR

Topi Kahara

showing 4 related works from this author

Effective models of two-flavor QCD: from small towards large $m_q$

2009

We study effective models of chiral fields and Polyakov loop expected to describe the dynamics responsible for the phase structure of two-flavor QCD. We consider the chiral sector described either using a linear sigma model or a Nambu-Jona-Lasinio model and study how these models, on the mean-field level when coupled with the Polyakov loop, behave as a function of increasing bare quark (or pion) mass. We find qualitatively similar behaviors for the cases of the linear sigma model and the Nambu-Jona-Lasinio model and, by comparing with existing lattice data, show that one cannot conclusively decide which of the two approximate symmetries drives the phase transitions at the physical point.

Quantum chromodynamicsQuarkPhysicsNuclear and High Energy PhysicsParticle physicsPhase transitionSigma model010308 nuclear & particles physicsHigh Energy Physics::LatticeNuclear TheoryHigh Energy Physics::PhenomenologyFOS: Physical sciences01 natural sciencesHigh Energy Physics - PhenomenologyPionHigh Energy Physics - Phenomenology (hep-ph)Mean field theoryLattice (order)0103 physical sciencesQuark–gluon plasma010306 general physics
researchProduct

Deconfinement vs. chiral symmetry and higher representation matter

2012

The interplay of deconfinement and chiral symmetry restoration are considered in terms of effective theories. We generalize the earlier model studies by considering fermions in higher representations, and study the finite temperature phase diagrams of SU(2) and SU(3) gauge theories with two fermion flavors in fundamental, adjoint or two-index symmetric representations. We discuss our results in relation to recent lattice simulations on these theories and outline possible applications in the context of dynamical electroweak symmetry breaking.

PhysicsChiral anomalyNuclear and High Energy PhysicsParticle physicsta114Spontaneous symmetry breakingHigh Energy Physics::LatticeElectroweak interactionHigh Energy Physics - Lattice (hep-lat)FOS: Physical sciencesDeconfinementTheoretical physicsHigh Energy Physics - PhenomenologyHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Gauge theorySymmetry breakingChiral symmetry breakingSpecial unitary group
researchProduct

Degrees of freedom and the phase transitions of two-flavor QCD

2008

We study two effective models for QCD, the Nambu-Jona-Lasinio -model and the linear sigma model extended by including a Polyakov loop potential, which is fitted to reproduce the pure gauge theory thermodynamics, and a coupling between the chiral fields and the Polyakov loop. Thus the resulting models have as relevant degrees of freedom the Polyakov loop and chiral fields. By comparing the extended models with the bare chiral models we can conclude that the addition of the Polyakov loop is necessary in order to obtain both qualitative and quantitative agreement with known results at finite temperatures. These results are extended to finite net-quark densities, several thermodynamical quantit…

Quantum chromodynamicsPhysicsQuarkNuclear and High Energy PhysicsPhase transitionSigma modelHigh Energy Physics::LatticeCritical phenomenaHigh Energy Physics::PhenomenologyFOS: Physical sciencesHigh Energy Physics - PhenomenologyHigh Energy Physics::TheoryTheoretical physicsHigh Energy Physics - Phenomenology (hep-ph)Quantum electrodynamicsQuark–gluon plasmaGauge theoryPhenomenology (particle physics)Physical Review D
researchProduct

Effective models of two-flavor QCD: finite $\mu$ and $m_q$-dependence

2010

We study effective models of chiral fields and Polyakov loop expected to describe the dynamics responsible for the phase structure of two-flavor QCD at finite temperature and density. We consider chiral sector described either using linear sigma model or Nambu-Jona-Lasinio model and study the phase diagram and determine the location of the critical point as a function of the explicit chiral symmetry breaking (i.e. the bare quark mass $m_q$). We also discuss the possible emergence of the quarkyonic phase in this model.

High Energy Physics - PhenomenologyHigh Energy Physics::LatticeHigh Energy Physics::Phenomenologyhep-ph114 Physical sciences
researchProduct