Quantum advantage in a molecular spintronic engine that harvests thermal fluctuation energy
Recent theory and experiments have showcased how to harness quantum mechanics to assemble heat/information engines with efficiencies that surpass the classical Carnot limit. So far, this has required atomic engines that are driven by cumbersome external electromagnetic sources. Here, using molecular spintronics, we propose an implementation that is both electronic and autonomous. Our spintronic quantum engine heuristically deploys several known quantum assets by having a chain of spin qubits formed by the paramagnetic Co centers of phthalocyanine (Pc) molecules electronically interact with electron-spin selecting Fe/C60 interfaces. Density functional calculations reveal that transport fluct…