0000000000000762

AUTHOR

Attila Hidvegi

Pre-production validation of the ATLAS level-1 calorimeter trigger system

The Level-1 Calorimeter Trigger is a major part of the first stage of event selection for the ATLAS experiment at the LHC. It is a digital, pipelined system with several stages of processing, largely based on FPGAs, which perform programmable algorithms in parallel with a fixed latency to process about 300 Gbyte/s of input data. The real-time output consists of counts of different types of trigger objects and energy sums. Prototypes of all module types have been undergoing intensive testing before final production during 2005. Verification of their correct operation has been performed stand-alone and in the ATLAS test-beam at CERN. Results from these investigations will be presented, along …

research product

Search for an excess of events with an identical flavour lepton pair and significant missing transverse momentum in root s=7 TeV proton-proton collisions with the ATLAS detector

Results are presented of a search for supersymmetric particles decaying into final states with significant missing transverse momentum and exactly two identical flavour leptons (e or mu) of opposite charge in sqrt{s}=7 TeV collisions at the Large Hadron Collider. This channel is particularly sensitive to supersymmetric particle cascade decays producing flavour correlated lepton pairs. Flavour uncorrelated backgrounds are subtracted using a sample of opposite flavour lepton pair events. Observation of an excess beyond Standard Model expectations following this subtraction procedure would offer one of the best routes to measuring the masses of supersymmetric particles. In a data sample corres…

research product

Commissioning Experience with the ATLAS Level-1 Calorimeter Trigger System

The ATLAS Level-1 Calorimeter Trigger is one of the main elements of the first stage of event selection for the ATLAS experiment at the LHC. The input stage consists of a mixed analogue/digital component taking trigger sums from the ATLAS calorimeters. The trigger logic is performed in a digital, pipelined system with several stages of processing, largely based on FPGAs, which perform programmable algorithms in parallel with a fixed latency to process about 300 Gbyte/s of input data. The real-time output consists of counts of different types of physics objects and energy sums. The production of final modules started in 2006, and installation of these modules and the necessary infrastructure…

research product