0000000000000837

AUTHOR

Luis R. Pericchi

showing 3 related works from this author

The Effective Sample Size

2013

Model selection procedures often depend explicitly on the sample size n of the experiment. One example is the Bayesian information criterion (BIC) criterion and another is the use of Zellner–Siow priors in Bayesian model selection. Sample size is well-defined if one has i.i.d real observations, but is not well-defined for vector observations or in non-i.i.d. settings; extensions of critera such as BIC to such settings thus requires a definition of effective sample size that applies also in such cases. A definition of effective sample size that applies to fairly general linear models is proposed and illustrated in a variety of situations. The definition is also used to propose a suitable ‘sc…

Deviance information criterionEconomics and EconometricsBayesian information criterionSample size determinationModel selectionPrior probabilityStatisticsLinear modelBayesian inferenceAlgorithmSelection (genetic algorithm)Statistics::ComputationMathematicsEconometric Reviews
researchProduct

Prior-based Bayesian information criterion

2019

We present a new approach to model selection and Bayes factor determination, based on Laplace expansions (as in BIC), which we call Prior-based Bayes Information Criterion (PBIC). In this approach, the Laplace expansion is only done with the likelihood function, and then a suitable prior distribution is chosen to allow exact computation of the (approximate) marginal likelihood arising from the Laplace approximation and the prior. The result is a closed-form expression similar to BIC, but now involves a term arising from the prior distribution (which BIC ignores) and also incorporates the idea that different parameters can have different effective sample sizes (whereas BIC only allows one ov…

Statistics and ProbabilityLaplace expansionApplied MathematicsBayes factorMarginal likelihoodStatistics::Computationsymbols.namesakeComputational Theory and MathematicsLaplace's methodBayesian information criterionPrior probabilitysymbolsApplied mathematicsStatistics::MethodologyStatistics Probability and UncertaintyLikelihood functionFisher informationAnalysisMathematics
researchProduct

An overview of robust Bayesian analysis

1994

Robust Bayesian analysis is the study of the sensitivity of Bayesian answers to uncertain inputs. This paper seeks to provide an overview of the subject, one that is accessible to statisticians outside the field. Recent developments in the area are also reviewed, though with very uneven emphasis. © 1994 SEIO.

Statistics and ProbabilityComputer scienceBayesian probabilitycomputer.software_genreData scienceField (computer science)Bayesian robustnessN/ARobust Bayesian analysisPrior probabilityData miningSensitivity (control systems)Statistics Probability and Uncertaintycomputer
researchProduct