0000000000000950
AUTHOR
Vito Ricotta
Autonomous 3D geometry reconstruction through robot-manipulated optical sensors
Abstract Many industrial sectors face increasing production demands and need to reduce costs, without compromising the quality. Whereas mass production relies on well-established protocols, small production facilities with small lot sizes struggle to update their highly changeable production at reasonable costs. The use of robotics and automation has grown significantly in recent years, but extremely versatile robotic manipulators are still not commonly used in small factories. Beside of the investments required to enable efficient and profitable use of robot technology, the efforts needed to program robots are only economically viable in case of large lot sizes. Generating robot programs f…
Reverse Engineering and Redesign of the Impeller of a Submersible Centrifugal Pump
In this work a Reverse Engineering based approach has been implemented aiming to reconstruct the 3D shape of a strongly damaged and no longer usable impeller of a submersible centrifugal pump. After obtaining the 3D model, new designs of the impeller were investigated in terms of structural stability and corrosion resistance by changing the geometry and the material. Obtained results show the used approach can be very useful both to reproduce, by Additive Manufacturing, no longer available spare parts, so allowing to extend the useful life of old machineries and to reduce costs resulting from plant shutdowns, but also to improve the performances of old designs, making use of different mater…
A New Approach to Evaluate the Biomechanical Characteristics of Osseointegrated Dental Implants
Tooth loss is a common pathology that affects many people. Dental osseointegrated implants are the ideal solution to restore normal functionality in partially or completely edentulous patients. The not perfect osseointegration and the fixture fracture are the main causes of failure for these kinds of implant. To avoid these drawbacks, several studies have been conducted to analyse the behaviour of dental implants. Aim of this work is to analyse the biomechanical behaviour of three different endosseous dental implants. For this purpose, a new numerical model has been developed to simulate different levels of osseointegration and to evaluate the stress values on the bone at different times. I…
A new method to evaluate the influence of the glenosphere positioning on stability and range of motion of a reverse shoulder prosthesis
Abstract Purpose Shoulder instability and reduced range of motion are two common complications of a total reverse shoulder arthroplasty. In this work, a new approach is proposed to estimate how the glenoid component positioning can influence the stability and the range of motion of a reverse shoulder prosthesis. Materials and methods A standard reverse shoulder prosthesis has been analysed. To perform virtual simulation of the shoulder-prosthesis assembly, all the components of the prosthesis have been acquired via a 3D laser scanner and the solid models of the shoulder bones have been reconstructed through CT images. Loads on the shoulder joint have been estimated using anatomical models d…
Thermal stress analysis of different full and ventilated disc brakes
During the braking phase, the heat produced by friction between pads and disc cannot be entirely dissipated. Consequently, the brake disc, especially if very hard braking occur, can accumulate large amounts of heat in a short time so producing high gradients of temperature on it. Under these conditions, functionality and safety of the brake system can be compromised. The object of this study is to investigate, under extreme working conditions, the thermomechanical behaviour of different brake rotors in order to evaluate their efficiency and stability and to identify any compromising weakness on them. In particular, by means of FEM thermo-mechanical coupled analyses, one full disc and three …
Influence of sutures configuration on the strength of tendon-patch joints for rotator cuff tears treatment
Abstract Purpose Massive rotator cuff tears are common in the aging population. The incidence of failed rotator cuff repairs is still quite high, especially in the treatment of full-thickness tears or revision repairs. In this context, natural and synthetic meshes can be used as augmentation scaffolds or as devices to close the gap between a retracted tendon and the bone. The purpose of this work is to evaluate the ultimate tensile strength of different tendon-patch joints in order to consider their use in the treatment of massive cuff tears. Materials and methods Porcine tendons and a synthetic low-density polypropylene mesh have been used. A preliminary study on the tensile strength of te…
Biomechanical Analysis of a New Elbow Prosthesis
Total elbow arthroplasty (TEA) is an effective and frequently used treatment for patients with debilitating elbow pathology. Total elbow prostheses have lagged behind those of the knee, hip and shoulder for different reasons, such as the high failure rate of the early designs. Concern remains regarding the longevity of TEA implants, especially in younger patients. The main cause of revision of the implant is usually related to the phenomenon of aseptic loosening mainly due to the cement-bone interface failure. Aim of this work is the biomechanical analysis of a new elbow prosthesis to investigate the mechanical behaviour at the cement-bone interface. For this reason, a musculoskeletal model…
Process parameters influence in additive manufacturing
Additive manufacturing is a rapidly expanding technology. It allows the creation of very complex 3D objects by adding layers of material, in spite of the traditional production systems based on the removal of material. The development of additive technology has produced initially a generation of additive manufacturing techniques restricted to industrial applications, but their extraordinary degree of innovation has allowed the spreading of household systems. Nowadays, the most common domestic systems produce 3D parts through a fused deposition modeling process. Such systems have low productivity and make, usually, objects with no high accuracy and with unreliable mechanical properties. Thes…
Influence of the Screw Positioning on the Stability of Locking Plate for Proximal Tibial Fractures: A Numerical Approach
Tibial fractures are common injuries in people. The proper treatment of these fractures is important in order to recover complete mobility. The aim of this work was to investigate if screw positioning in plates for proximal tibial fractures can affect the stability of the system, and if it can consequently influence the patient healing time. In fact, a more stable construct could allow the reduction of the non-weight-bearing period and consequently speed up the healing process. For that purpose, virtual models of fractured bone/plate assemblies were created, and numerical simulations were performed to evaluate the reaction forces and the maximum value of the contact pressure at the screw/bo…
New customized elbow orthosis made by additive manufacturing
Orthoses are additional devices that help people with disabilities. The focus of this work is the design and manufacture of a new customized elbow orthosis completely made by Additive Manufacturing (AM). One of the innovative characteristic of the device is the use of torsion springs that simulate the action of physiotherapists during exercises for patient rehabilitation. Parametric modeling approach based on generative algorithms was used to design the device. Finally, FEM analyses have been performed to validate the design.
A New Approach for CAD Modelling of Customised Orthoses by Generative Design
The standard method of design and manufacturing customised orthoses is still very time-consuming due to their often very complex shape. Different authors have tried to solve this problem but, unfortunately, the proposed approaches cannot be easily used in clinical practice because they require substantial interaction among medical staff and engineers or technicians. The aim of this work is to present the framework of a new design approach that could allow clinicians to easily model a customised orthosis, without a skilled technician develops the entire procedure. In particular, an automatic process based on Generative Design has been implemented. The obtained results have demonstrated that …
Numerical Optimization of a Composite Sandwich Panel with a Novel Bi-directional Corrugated Core Using an Animal-Inspired Optimization Algorithm
Composite sandwich panels with honeycomb, corrugated, tetrahedral, trapezoidal, 3D periodic and hybrid lattice cores have long been studied for their use in various industrial fields. In this study, several numerical analyses were conducted in ANSYS APDL environment in order to analyze the effect of a novel bi-directional corrugated core configuration on the flexural performance of a CFRP sandwich panel. In particular, the sandwich core is obtained by repeating a regular unit cell in two different directions to form a three-dimensional lattice structure. In order to determine the optimal values of the geometrical parameters of the core unit cell and to evaluate how the layout of the composi…
Additively manufactured textiles and parametric modelling by generative algorithms in orthopaedic applications
Purpose The purpose of this paper is to implement a new process aimed at the design and production of orthopaedic devices fully manufacturable by additive manufacturing (AM). In this context, the use of generative algorithms for parametric modelling of additively manufactured textiles (AMTs) also has been investigated, and new modelling solutions have been proposed. Design/methodology/approach A new method for the design of customised elbow orthoses has been implemented. In particular, to better customise the elbow orthosis, a generative algorithm for parametric modelling and creation of a flexible structure, typical of an AMT, has been developed. Findings To test the developed modelling a…
FEM and experimental analysis of a total knee prosthesis
In this study, a comparison between two different approaches used to study a total knee prosthesis is presented. In particular, the contact area of the components of knee prosthesis has been evaluated using both a numerical and an experimental approach. The numerical analysis has been performed by FEM Models, whereas the experimental study has been conducted using an ultrasonic-based method. To setup the FEM simulations, CAD Models of the components of the prosthesis have been reconstructed using a classic reverse engineering approach. Obtained results has allowed evaluating the contact area of the components of the prosthesis and demonstrated a very good level of correlation between numeri…
A new design approach for customised medical devices realized by additive manufacturing
AbstractThe aim of this work is the design of a new customised elbow orthosis completely realized by Additive Manufacturing and the development of generative algorithms for parametric modelling and creation of 3D patterns to be adapted to the CAD model. This work describes a method to perfect the design of a custom elbow orthosis. A reverse engineering approach has been used to digitalize the patient’s arm and the subsequent CAD modelling of the structure of the custom elbow orthosis has been performed. In particular, two algorithms have been implemented for the creation of 3D patterns and Voronoi tessellations. Subsequently, FEM analyses have been carried out to validate the design. Finall…
Influence of the metaphysis positioning in a new reverse shoulder prosthesis
Aim of this work is to investigate the behaviour of a new reverse shoulder prosthesis, characterized by a humeral metaphysis with a variable offset, designed to increase the range of movements and to reduce the impingement. In particular, by means of virtual prototypes of the prosthesis, different offset values of the humeral metaphysis have been analysed in order to find the best positioning able to maximize the range of movements of the shoulder joint. The abduction force of the deltoid, at different offset values, has been also estimated. The study has been organized as follows. In the first step, the point clouds of the surfaces of the different components of the prosthesis have been ac…
Generative Design for Additively Manufactured Textiles in Orthopaedic Applications
AbstractThe aim of this work is to implement a new process for the design and production of orthopaedic devices to realize entirely by Additive Manufacturing (AM). In particular, a generative algorithm for parametric modelling of flexible structures to use in orthopaedic devices has been developed. The developed modelling algorithm has been applied to a case study based on the design and production of a customized elbow orthosis made by Selective Laser Sintering. The results obtained have demonstrated that the developed algorithm overcomes many drawbacks typical of traditional CAD modelling approaches. FEM simulations have been also performed to validate the design of the orthosis. The new …
PROGETTAZIONE PER ADDITIVE MANUFACTURING DI ORTESI DI GOMITO PERSONALIZZATE E SVILUPPO DI MODELLO PARAMETRICO BASATO SU ALGORITMI GENERATIVI
Finite element analysis of two total knee joint prostheses
Aim of this work is to compare two different total knee prostheses that differ mainly in the shape of the polyethylene (PE) component inserted between the femoral and tibial plates. The best solution between them has been originally reshaped in order to reduce stress peaks. The study procedure has been divided into the following steps. First step is the digitalisation of the shape of the prostheses by means of a 3D laser scanner. The morphology of two prototypes of the prostheses has been acquired by elaborating multiple Moire fringe patterns projected on their surfaces. Second step consisted on the manipulation of these data in a CAD module, that is the interpolation of raw data into NURBS…
Firefly Algorithm for Structural Optimization Using ANSYS
In the mid-1980s, several metaheuristic methods began to be developed for solving a very large class of computational problems with the aim of obtaining more robust and efficient procedures. Among them, many metaheuristic methods use bio-inspired intelligent algorithms. In recent years, these methods are becoming increasingly important and they can be used in various subject areas for solving complex problems. Firefly Algorithm is a nature-inspired optimization algorithm proposed by Yang to solve multimodal optimization problems. In particular, the method is inspired by the nature of fireflies to emit a light signal to attract other individuals of this species. In this work, a numerical stu…
Study of a constrained finite element elbow prosthesis: the influence of the implant placement
Abstract Background The functional results of total elbow arthroplasty (TEA) are controversial and the medium- to long-term revision rates are relatively high. The aim of the present study was to analyze the stresses of TEA in its classic configuration, identify the areas of greatest stress in the prosthesis–bone–cement interface, and evaluate the most wearing working conditions. Materials and methods By means of a reverse engineering process and using a 3D laser scanner, CAD (computer-aided drafting) models of a constrained elbow prosthesis were acquired. These CAD models were developed and their elastic properties, resistance, and stresses were studied through finite element analysis (fin…
Biomechanical analysis of the humeral tray positioning in reverse shoulder arthroplasty design
Despite the widespread use of reverse total shoulder arthroplasty, the fundamental effects of implant configuration on certain biomechanical outcomes have not been completely elucidated especially for the most innovative prostheses. Aim of this work is to investigate the behaviour of a new reverse shoulder prosthesis, characterized by a humeral tray with a variable offset, designed to increase the range of motion and to reduce the impingement. The purposes of this study were to evaluate the effect of reverse shoulder implant design parameters on the deltoid muscle forces, required to produce abduction, and on the shoulder range of motion, in order to provide a more systematic understanding …