0000000000000985
AUTHOR
Abderraouf Selmi
Abstract A004: Systemic RNA vaccines: Connecting effective cancer immunotherapy with antiviral defense mechanisms
Abstract Mechanisms of antiviral host defense are important for survival and evolutionarily optimized for high sensitivity and potency. Intending to harvest the multitude of highly specialized and intertwined pathogen immune defense programs for cancer immunotherapy, we simulated a systemic pathogen intrusion into the blood stream by intravenous injection of lipid-formulated, tumor antigen-encoding mRNA nanoparticles. These RNA-lipoplexes (RNA-LPX) were directed to various lymphoid tissues, including the spleen, lymph nodes and bone marrow, which provide the ideal microenvironment for efficient priming and amplification of T cell responses. Solely the RNA-to-lipid ratio was discovered to de…
Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells.
AbstractAdoptive transfer of dendritic cells (DCs) transfected with in vitro–transcribed, RNA-encoding, tumor-associated antigens has recently entered clinical testing as a promising approach for cancer immunotherapy. However, pharmacokinetic exploration of RNA as a potential drug compound and a key aspect of clinical development is still pending. While investigating the impact of different structural modifications of RNA molecules on the kinetics of the encoded protein in DCs, we identified components located 3′ of the coding region that contributed to a higher transcript stability and translational efficiency. With the use of quantitative reverse transcription–polymerase chain reaction (R…
Tumor vaccination using messenger RNA: prospects of a future therapy.
While the endeavor to vaccinate against cancer has been pursued for over 20 years, only recently was the first tumor vaccine approved. Among the different antigen formats assessed for vaccination, coding messenger RNA (mRNA) is emerging as a particularly attractive option. It can code for all types of transcript based proteins, is easy and cost efficient to produce, has a favorable safety profile and enables induction of combined immune responses. Within the last few years major developments have been achieved in this field. Clinical approaches use mRNA either for direct administration or for engineering of adoptively transferred dendritic cells. However, there are still challenges to be ov…
Improvement of In Vivo Expression of Genes Delivered by Self-Amplifying RNA Using Vaccinia Virus Immune Evasion Proteins.
Among nucleic acid–based delivery platforms, self-amplifying RNA (saRNA) vectors are of increasing interest for applications such as transient expression of recombinant proteins and vaccination. saRNA is safe and, due to its capability to amplify intracellularly, high protein levels can be produced from even minute amounts of transfected templates. However, it is an obstacle to full exploitation of this platform that saRNA induces a strong innate host immune response. In transfected cells, pattern recognition receptors sense double-stranded RNA intermediates and via activation of protein kinase R (PKR) and interferon signaling initiate host defense measures including a translational shutdow…
FLT3 Ligand as a Molecular Adjuvant for Naked RNA Vaccines
Intranodal immunization with antigen-encoding naked mRNA has proven to be an efficacious and safe approach to induce antitumor immunity. Thanks to its unique characteristics, mRNA can act not only as a source for antigen but also as an adjuvant for activation of the immune system. The search for additional adjuvants that can be combined with mRNA to further improve the potency of the immunization revealed Fms-like tyrosine kinase 3 (FLT3) ligand as a potent candidate. Systemic administration of the dendritic cell-activating FLT3 ligand prior to or along with mRNA immunization-enhanced priming and expansion of antigen-specific CD8(+) T cells in lymphoid organs, T-cell homing into melanoma tu…
Increased antigen presentation efficiency by coupling antigens to MHC class I trafficking signals.
Abstract Genetic modification of vaccines by linking the Ag to lysosomal or endosomal targeting signals has been used to route Ags into MHC class II processing compartments for improvement of CD4+ T cell responses. We report in this study that combining an N-terminal leader peptide with an MHC class I trafficking signal (MITD) attached to the C terminus of the Ag strongly improves the presentation of MHC class I and class II epitopes in human and murine dendritic cells (DCs). Such chimeric fusion proteins display a maturation state-dependent subcellular distribution pattern in immature and mature DCs, mimicking the dynamic trafficking properties of MHC molecules. T cell response analysis in…
Antitumor Vaccination with Synthetic mRNA: Strategies for In Vitro and In Vivo Preclinical Studies
Synthetic antigen-encoding mRNA is increasingly exploited as a tool for delivery of genetic information of complete antigens into professional antigen presenting dendritic cells for HLA haplotype-independent antigen-specific vaccination against cancer. Two strategies for mRNA-based antitumor vaccination have emerged into the clinical setting. One is transfection of autologous dendritic cells with synthetic mRNA for adoptive transfer into the patient. The other is direct injection of naked synthetic mRNA. Both methods have proven to be feasible and safe and to elicit antigen-specific immune responses. The design of novel synthetic vaccines employing synthetic mRNA requires further in-depth i…
A non-functional neoepitope specific CD8+ T-cell response induced by tumor derived antigen exposure in vivo
Cancer-associated mutations, mostly single nucleotide variations, can act as neoepitopes and prime targets for effective anti-cancer T-cell immunity. T cells recognizing cancer mutations are critical for the clinical activity of immune checkpoint blockade (ICB) and they are potent vaccine antigens. High frequencies of mutation-specific T cells are rarely spontaneously induced. Hence, therapies that broaden the tumor specific T-cell response are of interest. Here, we analyzed neoepitope-specific CD8+ T-cell responses mounted either spontaneously or after immunotherapy regimens, which induce local tumor inflammation and cell death, in mice bearing tumors of the widely used colon carcinoma cel…
Highly specific auto-antibodies against claudin-18 isoform 2 induced by a chimeric HBcAg virus-like particle vaccine kill tumor cells and inhibit the growth of lung metastases.
Abstract Strategies for antibody-mediated cancer immunotherapy, such as active immunization with virus-like particle (VLP)-based vaccines, are gaining increasing attention. We developed chimeric hepatitis B virus core antigen (HBcAg)-VLPs that display a surface epitope of the highly selective tumor-associated cell lineage marker claudin-18 isoform 2 (CLDN18.2) flanked by a mobility-increasing linker. Auto-antibodies elicited by immunization with these chimeric HBcAg-VLPs in 2 relevant species (mouse and rabbit) bind with high precision to native CLDN18.2 at physiologic densities on the surface of living cells but not to the corresponding epitope of the CLDN18.1 splice variant that differs b…
Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy
Lymphoid organs, in which antigen presenting cells (APCs) are in close proximity to T cells, are the ideal microenvironment for efficient priming and amplification of T-cell responses. However, the systemic delivery of vaccine antigens into dendritic cells (DCs) is hampered by various technical challenges. Here we show that DCs can be targeted precisely and effectively in vivo using intravenously administered RNA-lipoplexes (RNA-LPX) based on well-known lipid carriers by optimally adjusting net charge, without the need for functionalization of particles with molecular ligands. The LPX protects RNA from extracellular ribonucleases and mediates its efficient uptake and expression of the encod…
Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation.
Even though it is known for more than one decade that antigen-encoding RNA can deliver antigenic information to induce antigen-specific immunity against cancer, the nature and mechanism of RNA uptake have remained enigmatic. In this study, we investigated the pharmacokinetics of naked RNA administered into the lymph node. We observed that RNA is rapidly and selectively uptaken by lymph node dendritic cells (DCs). Furthermore, in vitro and in vivo studies revealed that the efficient internalization of RNA by human and murine DCs is primarily driven by macropinocytosis. Selective inhibition of macropinocytosis by compounds or as a consequence of DC maturation abrogated RNA internalization and…
Phosphorothioate cap analogs increase stability and translational efficiency of RNA vaccines in immature dendritic cells and induce superior immune responses in vivo
Vaccination with in vitro transcribed RNA coding for tumor antigens is considered a promising approach for cancer immunotherapy and has already entered human clinical testing. One of the basic objectives for development of RNA as a drug is the optimization of immunobioavailability of the encoded antigen in vivo. By analyzing the effect of different synthetic 5' mRNA cap analogs on the kinetics of the encoded protein, we found that m(2)(7,2'-O)Gpp(S)pG (beta-S-ARCA) phosphorothioate caps, in particular the D1 diastereoisomer, profoundly enhance RNA stability and translational efficiency in immature but not mature dendritic cells. Moreover, in vivo delivery of the antigen as beta-S-ARCA(D1)-c…