0000000000001091

AUTHOR

Luigi Calabrese

0000-0002-2923-7664

The effect of a liquid CTBN rubber modifier on the thermo-kinetic parameters of an epoxy resin during a pultrusion process

Abstract Rheo-kinetic behaviour of an epoxy resin, coupled with an anhydride hardener, with different CTBN liquid rubber concentration (0–15 phr), used in fibre reinforced plastics, was analysed comparing experimental data with theoretical models. The modelling of technological pultrusion process for thermoset matrix composites, developed through a numerical code realised with MATLAB, is reported, too. The model includes conduction and cure heat, degree of cure and viscosity evolution during the curing within the die. Considerable differences in process condition, using different rubber amount, are obtained. The numerical modelling of process conditions shows that the CTBN rubber presence i…

research product

Modelling of phase transitions and residual thermal stress of CTBN rubber modified epoxy resins during a pultrusion process

Abstract The implicit finite difference and fourth order Runge-Kutta method are used both to solve the heat transfer problem in the pultrusion reaction and to calculate the temperature and conversion distributions within a thermoset composite profile. The aim of our work is to study the influence of a rubbery phase added to the epoxy matrix in production conditions. The results have shown that the rubber modified systems have a low exothermic temperature peak value, so that neither the amount of cured resin nor the final product properties are limited. First of all we will show that the phase transition (gelation and vitrification) zones within the die change as the amount of rubber varies …

research product

Salt spray fog ageing of hybrid composite/metal rivet joints for automotive applications

Abstract The present experimental investigation aims to investigate the effect of salt-fog exposition on the mechanical behaviour of composite/metal riveted joints. To this aim, two kinds of joint were exposed to salt-fog environmental conditions according to ASTM B117 standard, for fifteen weeks. In particular, two composite laminates (i.e. glass fibre and carbon fibre/epoxy composites) were used as composite substrate joined with the metal substrate (i.e. aluminium alloy Al 6060). Single-lap shear tests were carried out in order to evaluate the evolution of the mechanical performances and the damage mechanisms of the riveted joints during the ageing exposition. The results evidence that t…

research product

Caratterizzazione di pannelli sandwich al variare del materiale costituente il core

research product

Dynamic Mechanical Behavior Analysis of Flax/Jute Fiber-Reinforced Composites under Salt-Fog Spray Environment

Over the last decades, natural fiber-reinforced polymer composites (NFRPs) gained great attention in several engineering fields thanks to the reduction of the environmental impact and the end-of-life cost disposal. Unfortunately, the use of NFRPs is limited, mainly due to their weak resistance against humid environments. Since limited literature is available about the evolution of the dynamic mechanical response of NFRPs under aggressive environments, this paper aims to investigate the damping properties of flax, jute and flax/jute epoxy composites exposed to salt-fog up to 60 days. Furthermore, sodium bicarbonate fiber treatment was performed to improve the composites&rsquo

research product

Experimental design of the bearing performances of flax fiber reinforced epoxy composites by a failure map

Abstract This paper represents the first effort aimed to the investigation of the pin/hole contact stress and failure mechanisms of epoxy composites reinforced with woven flax fabrics, underwent to tensile bearing tests. In particular, the maximum loads and failure modes are evaluated at varying the laminate geometrical configuration. In order to optimize the use of polymer composites reinforced with flax fibers in structural applications, an experimental failure map, identifying main failure modes of mechanically fastened joints, is obtained as function of hole diameter, distance of the hole from the free edge of the laminate and laminate width. Moreover, a theoretical approach based on th…

research product

Effect of external basalt layers on durability behaviour of flax reinforced composites

Abstract Aim of this work is to evaluate the influence of external layers of basalt-mat on the durability behaviour of flax reinforced epoxy composites. To this scope, long-term ageing tests were performed on two different laminates in critical environmental conditions. The first laminate, named Flax, was constituted by stacking ten layers of bidirectional flax fabrics. The second one, named Flax–Basalt, was produced by replacing two external flax layers with two layers of basalt mat for each side of the laminate. Both laminates were exposed to salt-fog environmental conditions, according to ASTM B 117 standard, for 60 days. Five samples per laminate were removed from salt-fog spray chamber…

research product

Dual Ni/Ni-Co electrodeposited coatings for improved erosion-corrosion behaviour

Abstract Industrial applications of hydrophobic metallic coatings are limited to durability of their surface structures against detrimental effects of the surrounding environments. In the present research, the life-long of the hierarchical structure of hydrophobic nickel coating in an erosive-corrosive solution was investigated. The effect of alloying with cobalt on strengthening the hierarchical structures was also investigated. In this regard, highly hydrophobic Ni/Ni, Ni-Co/Ni-Co, dual Ni/Ni-Co and dual Ni-Co/Ni coatings with rough hierarchical structures were electrodeposited. In situ electrochemical measurements were performed to investigate changes in corrosion resistance and hydropho…

research product

Pull-off adhesion of hybrid glass-steel adhesive joints in salt fog environment

The aim of this paper was to evaluate the durability behaviour of glass/steel adhesive joints exposed to salt fog environmental conditions for ten weeks, according to ASTM B117 standard. To this scope, pull-off mechanical tests were carried out in order to evaluate the performances evolution and damage phenomena of the adhesive joints during the ageing exposition. Two different types of adhesives were compared (i.e. epoxy and polyurethane ones). Moreover, the effects of the glass surface condition and the presence of a basalt mat layer within the adhesive thickness were evaluated. The mechanical performances were related with the occurred failure mechanisms. Epoxy-based joints showed higher…

research product

A simplified predictive approach to assess the mechanical behavior of pinned hybrid composites aged in salt-fog environment

Abstract Aim of this paper is to assess the predictive capabilities of a simplified theoretical approach on the failure load of aged pinned hybrid composites. In particular, the mechanical performances of glass-flax hybrid epoxy laminates exposed to salt spray fog environment, were used as input data in order to address the analytical model. Preliminarily, the relationship among mechanical performances, failure mechanisms, joint geometry and ageing time, was evaluated by double-lap joint tests on pinned samples at varying joint geometry and ageing time. The bearing and shear out limit stress of samples aged for 60 days under the salt-fog environment underwent a reduction of about 20% compar…

research product

Failure Map of Composite Laminate Mechanical Joint

The aim of this research is to investigate the pin/hole contact stress of a composite laminate and failure modes when submitted to tensile bearing tests. The limit loads and failure modes are evaluated as a function of pin diameter and hole position. Analyzing the joint geometry effect on the fracture mechanisms, a failure map is obtained, identifying three regions of typical failure modes of mechanically fastened joints. A theoretical approach is proposed to identify the field of each fracture mode to obtain a simple experimental methodology to support the design of a particular joint laminate. In addition, a simplified numerical model is proposed to evaluate near the hole the stress/stra…

research product

Effect of glass fiber hybridization on the durability in salt-fog environment of pinned flax composites

The aim of the present paper is to evaluate the effect of the hybridization with external layers of glass fibers on the durability of flax fiber reinforced composites in severe aging conditions. To this scope, full glass, full flax and hybrid glass–flax pinned laminates were exposed to a salt-fog environment for up to 60 days. Double-lap pinned joint tests were performed to assess the pin-hole joints performances at varying the laminate stacking sequence. In order to better discriminate the relationship between the mechanical behavior and the fracture mechanisms of joints at increasing the aging time, different geometries (i.e., by varying both the hole diameter D and the free edge distance…

research product

Manufacture of marine composite sandwich structures

Abstract The aim of this chapter is to present the main processes of manufacture of composite sandwich structures used in marine applications. In the introduction, sandwich structure classification and properties and advantages/disadvantages in their uses are presented. In the second and third section, the main used technologies to made sandwich are, respectively, described and compared. Then, the goodness of these techniques is evidenced with the discussion of some experimental results obtained by the authors in their studies. The last section concludes with a thorough list of the future trends.

research product

On the response of flax fiber reinforced composites under salt-fog/dry conditions: Reversible and irreversible performances degradation

Abstract Despite their scarce resistance to humid or wet conditions, natural fiber reinforced composites (NFRCs) seem to be able to partially recover their performances under discontinuous exposition to marine environment. To investigate this peculiarity, flax fiber reinforced composite was at first subjected to salt-fog spray condition at 35 °C for 15 and 30 days, respectively, and then stored in ‘‘dry” condition (i.e., 50% R.H. and 22 °C) between 0 and 21 days. The performances evolution was evaluated through flexural tests, water uptake and contact angle measurements. Moreover, the morphology of fractured mechanical samples was examined by using 3D optical microscope and scanning electro…

research product

Pinned hybrid glass-flax composite laminates aged in salt-fog environment: Mechanical durability

The aim of the present paper is to study the mechanical performance evolution of pinned hybrid glass-flax composite laminates under environment aging conditions. Hybrid glass-flax fibers/epoxy pinned laminates were exposed to salt-spray fog environmental conditions up to 60 days. With the purpose of assessing the relationship between mechanical performances and failure mechanisms at increasing aging time, single lap joints at varying joint geometry (i.e., hole diameter D and hole distance E from free edge) were characterized after 0 days (i.e., unaged samples), 30 days, and 60 days of salt-fog exposition. Based on this approach, the property&ndash

research product

Windsurf board sandwich panels under static indentation

research product

Experimental assessment of the improved properties during aging of flax/glass hybrid composite laminates for marine applications

The investigation for natural fibers composites in terms of performance, durability, and environmental impact for structural applications in marine environments is a relevant challenge in scientific and industrial field. On this context, the aim of this work is to assess the durability and mechanical stability in severe environment of epoxy/glass–flax hybrid composites. For the sake of comparison, also full flax and glass epoxy composites were investigated. All samples were exposed to salt–fog environmental conditions up to 60 aging days. Wettability behavior during time was compared with water uptake evolution to assess water sensitivity of hybrid composite configurations. Moreover, quasi-…

research product

Effects of powder concentration and type of resin on the performance of marble composite structures

In this work, we will expose the behaviour of a composite structure reinforced with marble powder. The attention was focused on the effects produced on the physical and mechanical properties due to different kinds of matrix (epoxy and polyester resins) and filler amounts (60%, 70%, 80%). Rheological, static flexural and Izod impact tests have been carried out. An experiment designed was defined for the mechanical tests, in order to quantify the effects of both the resin and the marble percentage on the material properties, as well as to identify a possible correlation between these factors. Moreover, water absorption and stain resistance have been evaluated to study the surface properties o…

research product

Study of Intumescent Coatings Growth for Fire Retardant Systems in Naval Applications: Experimental Test and Mathematical Model

Onboard ships, fire is one of the most dangerous events that can occur. For both military and commercial ships, fire risks are the most worrying; for this reason they have an important impact on the design of the vessel. The intumescent coatings react when heated or in contact with a living flame, and a multi-layered insulating structure grows up, protecting the underlying structure. In this concern, the aim of the paper is to evaluate the intumescent capacity of different composite coatings coupling synergistically modeling and experimental tests. In particular, the experiments have been carried out on a new paint formulation, developed by Colorificio Atria S.r.l., in which the active comp…

research product

Three-Point Flexural Behaviour of GFRP Sandwich Composites: A Failure Map

In this work, the failure mechanisms of GFRP/PVC foam core sandwich structures subjected to three-point bending are analysed. By varying the skin thickness (t ) and the span length between supports (l), experimental tests were carried out in order to find the relationship between the geometrical configuration of the sandwiches and the failure mechanism. By plotting failure mechanism on a graph of l against t , a failure map was created identifying the three typical failure mode regions of these sandwiches. The graph clearly shows the failure mode corresponding to each combination of l and t . To help optimise the use of these sandwich beams as structural elements, a theoretical failure mode…

research product

Experimental and numerical evaluation of sandwich composite structures

The main problem working with sandwich composite structures is their intrinsic anisotropy and non-homogeneity that does not allow their correct modelling. Nowadays the available data on mechanical properties of complex structures, necessary to allow a correct and reliable design, are not sufficient. The aim of the present work is to extend the knowledge of mechanical properties both on single components and on complete structures, focusing on the effects induced by different kind of skin arrangements (Kevlar, glass and carbon fibres). Compressive, shear and flexural tests were performed for a complete static mechanical characterisation of the sandwich structure both on each single component…

research product

Failure maps to assess bearing performances of glass composite laminates

Aim of this article is the assessment of the bearing mechanical performances of pin-loaded glass laminates as function of their geometrical configuration. To this concern, 32 specimens having different hole diameter (D), laminate width (W), and hole center to laminate free edge distance (E) have been tested under bearing conditions. The maximum bearing stress and the stress-displacement curves were analyzed as function both of hole to laminate free edge distance E and hole diameter D. Moreover, an experimental 2D failure map was created by placing the experimental results (i.e., the kind of failure mechanism occurred for each geometrical configuration) in the plane E/D versus W/D ratios. In…

research product

Bearing strength and failure behavior of pinned hybrid glass-flax composite laminates

Abstract The aim of the present work is to evaluate the influence of external layers of glass woven fabric on the pin-hole strength of flax/epoxy laminates. Single lap bearing tests were carried out to evaluate the fastened joint performances depending on laminate stacking sequence. In order to better identify the mechanical behavior of the hybrid laminate, full glass and flax laminates were also compared. In particular, bearing stress and failure mechanisms were investigated at varying joint geometry. Furthermore, an experimental failure map, clustering main failure modes of pinned hybrid composite laminate, was used to better clarify the relationship between mechanical failure and geometr…

research product

Assessment of Arundo donax Fibers for Oil Spill Recovery Applications

In the last years, natural fibers are increasingly investigated as an oil recovery system in order to overcome the oil spillage phenomena, thus preserving environment and aquatic life. In particular, lignocellulose-based fibers have recently been employed with promising results. In such a context, the aim of this paper is to assess the oil sorption capability of natural fibers extracted from the stem of the giant reed Arundo donax L., a perennial rhizomatous grass belonging to the Poaceae family that grows naturally all around the world thanks to its ability to tolerate different climatic conditions. Sorption tests in several pollutants and water as a reference were carried out. The fibers …

research product

Effect of seawater on mechanical properties of composite laminates

research product

Effect of Stacking Sequence and Sodium Bicarbonate Treatment on Quasi-Static and Dynamic Mechanical Properties of Flax/Jute Epoxy-Based Composites

The present paper deals with the investigation of quasi-static and dynamic mechanical response of epoxy-based composites reinforced with flax and/or jute plain weave fabrics. In order to evaluate the influence of the stacking sequence, two monolithic laminates reinforced with flax or jute fibers and two hybrid flax/jute laminates were manufactured through the vacuum infusion technique. Furthermore, an eco-friendly and cost-effective surface treatment based on fiber soaking in a sodium bicarbonate solution was employed to improve the fiber-matrix adhesion. The mechanical characterization (by means of quasi-static flexural, dynamic mechanical thermal analysis and Charpy impact tests) allowed …

research product

Effects of aging in salt spray conditions on flax and flax/basalt reinforced composites: Wettability and dynamic mechanical properties

Abstract In the last years, the industrial policies are more attentive to issues concerning sustainability, recycling and environmental care. Therefore, the use of natural fibres in composite materials has spread more and more. This paper deals with flax and basalt fibres within an epoxy matrix by investigating the wettability and the dynamic mechanical properties of the resulting composites, subjected to long-term aging tests in critical environmental conditions. The first laminate was constituted by stacking ten layers of bidirectional flax fabrics. The second one was produced by replacing two external flax layers with two layers of basalt mat, for each side of the laminate. Both laminate…

research product

An aging evaluation of the bearing performances of glass fiber composite laminate in salt spray fog environment

The aim of the present paper is to assess the bearing performance evolution of pinned, glass-composite laminates due to environmental aging in salt-spray fog tests. Glass fibers/epoxy pinned laminates were exposed for up to 60 days in salt-spraying, foggy environmental conditions (according to ASTM B117 standard). In order to evaluate the relationship between mechanical failure mode and joint stability over increasing aging time, different single lap joints, measured by the changing hole diameter (D), laminate width (W) and hole free edge distance (E), were characterized at varying aging steps. Based on this approach, the property-structure relationship of glass-fibers/epoxy laminates was a…

research product

Influence of sodium bicarbonate treatment on the aging resistance of natural fiber reinforced polymer composites under marine environment

Abstract Aim of the current study is to investigate how an innovative and eco-friendly chemical treatment based on sodium bicarbonate solution (10 wt%) can improve the aging resistance in marine environment of epoxy based composites, reinforced with flax and jute fibers. To this scope, treated and untreated fiber reinforced composites were manufactured through vacuum infusion technique. The resulting composites were then exposed to salt-fog spray conditions up to 60 days, according to ASTM B117 standard. The assessment of their durability was made by means of tensile, flexural quasi-static tests and Charpy impact tests. Furthermore, the water uptake evolution of each composite was monitored…

research product

Effect of CTBN rubber inclusions on the curing kinetic of DGEBA–DGEBF epoxy resin

Abstract The curing kinetics of an epoxy resin matrix, based on diglycil ether of bisphenol A and F (DGEBA–DGEBF), associated with an anhydride hardener, at different carboxyl-terminated copolymer of butadiene and acrylonitrile liquid rubber (CTBN) concentration (0–10 phr) are studied using a differential scanning calorimetry (DSC) and a stress-controlled rheometer in isothermal and dynamic conditions. The aim of this work is to correlate the presence of the rubber phase with the transition phenomena that occur during the curing process. The CTBN rubber induces a catalytic effect on the polymerization of the pure resin clearly observed by a significant enhancement of the curing rate. Calori…

research product

Salt-fog spray aging of jute-basalt reinforced hybrid structures. Flexural and low velocity impact response

Abstract In this work, a study on the aging resistance of jute and jute-basalt interply hybrid laminates exposed to salt-fog is presented with the aim to investigate the possibility to enhance the durability of natural fiber reinforced composites for marine application by a ply-substitution approach. In particular, jute and basalt/jute reinforced composite plates were manufactured by vacuum assisted resin infusion in two different staking sequences (i.e., intercalated and sandwich-like basalt-jute) and aged under salt fog conditions. The effects of the accelerated aging at increasing times on the mechanical response of laminates were assessed in both quasi static (three point bending) and d…

research product

Comparisons of processing and strength properties of two adhesive systems for composite joints

Abstract In the present study rheological, static and impact tests are carried out on two adhesive resins usually employed in marine applications; then single lap joint tests are conducted on composites joints evidencing the effect of the curing time of both resins on the mechanical properties of the joint. The applicability and workability conditions of the adhesive resins are determined evaluating the curing evolution by a preliminary rheological analysis; then the relation of curing properties with the mechanical performances of the resins themselves and with ones of the composite joints is estimated. Static flexural and Izod impact tests are performed on the resins at increasing time af…

research product

In situ monitoring of moisture uptake of flax fiber reinforced composites under humid/dry conditions

The use of green materials such as natural fiber-reinforced composites represents an increasingly stringent prerogative in the future planning of industrial and non-industrial production. The optimization of these materials is the main aim of the current research, focused on the evaluation of the behavior of flax fiber reinforced composites exposed to isothermal adsorption and desorption cycles, at varying the partial pressure of water vapor (P/P0). For this purpose, the moisture uptake and the morphology changes of the composite material and their constituents were in situ monitored through a measurement protocol, by using a dynamic vapor sorption (DVS) analysis, coupled with an environmen…

research product

Micro‐tomographic characterization of composite recycled glass‐silicone foams for applications in civil engineering

Noninvasive X‐ray micro‐computed tomography was applied for a complete quantitative and qualitative analysis of the cellular structure of composite foams constituted by a silicone matrix and a glass production waste filler. Composite foams with different glass filler weight content in the range 0–80% were synthesized and characterized. The tomographic analysis was employed in order to assess the structural heterogeneities, void fraction values, and bubble size distribution for all composite foams. The 3D micro‐CT images analysis, performed at different cross‐sections, highlighted heterogeneous cell growth or more elongated cells in the case of low and high filler content foams, respectively…

research product

Surface Modified Arundo Donax Natural Fibers for Oil Spill Recovery

The use of green materials for oil recovery applications is the goal to be achieved to reduce the environmental impact of these essential processes. In this context, Arundo Donax L. is a plant known for its wide uses whose absorbent properties have been previously investigated. In this paper, the influence of silane surface treatment on the absorbent behavior of natural fibers extracted from the culms of this eco-friendly and cost-effective material was assessed. A close correspondence has been identified between the physical characteristics of the investigated oil and the fiber size, by means of microstructural and morphological analysis. Excellent results have been achieved with an absorp…

research product

Performances Recovery of Flax Fiber Reinforced Composites after Salt-Fog Aging Test

In the present paper, the performance recovery under conditions of discontinuous exposure to a marine environment of a natural fiber-reinforced composite (NFRC) reinforced by flax fibers was assessed. In particular, this laminate was initially exposed to salt-fog for 15 and 30 days, and then stored in a controlled air condition for up to 21 days. The flax fiber-reinforced composite showed coupled reversible and irreversible aging phenomena during the wet stage, as well as evidencing a significant mechanical recovery during the dry stage. Unlike the stiffness, the laminate showed a noticeable recovery of its flexural strength. This behavior affected the composite material toughness. A simpli…

research product

Geometry and stacking sequence effect on composite spinnaker pole’s stiffness: experimental and numerical analysis

Composite materials are widely employed in sailing sports, a possible application is for the mast pole or other sail poles. In the paper the attention is focused on the spinnaker poles mechanical performances; in particular the focus is on axial and ring compressive properties of three different carbon fibre/epoxy resin spinnaker poles, to investigate both the diameter and stacking sequence effect on the mechanical performance of the structure. Starting from the stacking sequence used in the production of a particular spinnaker pole, the effect of a lamina at 0- in the middle of wall thickness is investigated with the purpose to obtain a more stiff structure. Moreover to test the proposed s…

research product

Evolution of the bearing failure map of pinned flax composite laminates aged in marine environment

Abstract Aim of the present paper is to evaluate how the bearing behavior of pinned flax composites can be influenced by their exposition to critical environment such as marine one. To this scope, flax fibers/epoxy pinned laminate was exposed up to 60 days to salt-fog environment, according to ASTM B 117 standard. In particular, samples having different hole diameter (D), laminate width (W), and hole center to laminate free edge distance (E) have been tested under single lap bearing tests at varying the aging exposition time. Following this procedure, an experimental 2D failure map clustering main failure modes was created by placing the experimental results in the plane E/D versus W/D rati…

research product

Arundo Donax Fibers as Green Materials for Oil Spill Recovery

Oil spillage is considered one of the most devastating forms of pollution, for its effect on the environment, particularly on aquatic life. This kind of disaster can impact in two ways, directly caused by the polluting spilled oil or due to the cleanup process. In fact, oil floating on water does not allow sunlight to pass through and its toxicity puts the life of aquatic animals at risk. Furthermore, other factors can also contribute to this damage. In fact, a wrong oil recovery system can add a further pollution level. Polymer sorbents used for the oil spill recovery, if not properly treated, increase the level of marine and ground pollution. For this reason, in the last years, green mate…

research product

Study of Snowboard Sandwich Structures

The aim of the present research is to extend the knowledge of mechanical properties both on single components and on complete structure employed for snowboard. Flexural and torsion tests are performed to acquire important comparison parameters between snowboard sandwich structures that differ for the core material employed (wood, PVC foam core). A simplified FEM model is proposed to simulate the flexural tests of the sandwich structure showing good predictive capability.

research product