6533b824fe1ef96bd1280ad2
RESEARCH PRODUCT
Failure Map of Composite Laminate Mechanical Joint
Luigi CalabreseAntonino ValenzaC. BorsellinoG. Di BellaVincenzo Fioresubject
Materials scienceComposite number02 engineering and technologycompositesfailure modeslaw.inventionStress (mechanics)0203 mechanical engineeringlawUltimate tensile strengthMaterials ChemistryComposite materialJoint (geology)bearingBearing (mechanical)business.industryMechanical EngineeringfiberglassStructural engineering021001 nanoscience & nanotechnologycomposites bearing failure modes fiberglass.Settore ING-IND/22 - Scienza E Tecnologia Dei Materiali020303 mechanical engineering & transportsContact mechanicsMechanics of MaterialsMechanical jointCeramics and CompositesFracture (geology)0210 nano-technologybusinesscomposites; bearing; failure modes; fiberglassdescription
The aim of this research is to investigate the pin/hole contact stress of a composite laminate and failure modes when submitted to tensile bearing tests. The limit loads and failure modes are evaluated as a function of pin diameter and hole position. Analyzing the joint geometry effect on the fracture mechanisms, a failure map is obtained, identifying three regions of typical failure modes of mechanically fastened joints. A theoretical approach is proposed to identify the field of each fracture mode to obtain a simple experimental methodology to support the design of a particular joint laminate. In addition, a simplified numerical model is proposed to evaluate near the hole the stress/strain distribution under tensile bearing load. This allows one to better understand the relevant dependence of the failure modes from the geometry of the joint for a given composite laminate.
year | journal | country | edition | language |
---|---|---|---|---|
2007-01-01 | Journal of Composite Materials |