0000000000001202
AUTHOR
Jean-reynald Macé
Optical frequency domain reflectometer distributed sensing using microstructured pure silica optical fibers under radiations
International audience; We investigated the capability of micro-structured optical fibers to develop multi-functional, remotely-controlled, Optical Frequency Domain Reflectometry (OFDR) distributed fiber based sensors to monitor temperature in nuclear power plants or high energy physics facilities. As pure-silica-core fibers are amongst the most radiation resistant waveguides, we characterized the response of two fibers with the same microstructure, one possessing a core elaborated with F300 Heraeus rod representing the state-of-the art for such fiber technology and one innovative sample based on pure sol-gel silica. Our measurements reveal that the Xray radiations do not affect the capaci…
Origin of the visible absorption in radiation-resistant optical fibers
In this work we investigated the point defects at the origin of the degradation of radiation-tolerant optical fibers used in the visible part of the spectrum for plasma diagnostics in radiation environments. For this aim, the effects of γ -ray irradiation up to the dose of 10 MGy(SiO2) and post-irradiation thermal annealing at 550◦C were studied for a Fluorinedoped fiber. An absorption peaking around 2 eV is mainly responsible for the measured radiation-induced losses, its origin being currently debated in the literature. On the basis of the unchanging shape of this band with the radiation dose, its correlation with the 1.9 eV photoluminescent band and the thermal treatment results we assig…
Influence of neutron and gamma-ray irradiations on rad-hard optical fiber
We investigated point defects induced in rad-hard Fluorine-doped optical fibers using both a mixed source of neutrons (fluences from 1015 to 1017 n/cm2) and γ-rays (doses from 0.02 to 2 MGy) and by a γ-ray source (dose up to 10 MGy). By combining several complementary spectroscopic techniques such as radiation-induced attenuation, confocal micro-luminescence, time-resolved photo-luminescence and electron paramagnetic resonance, we evidenced intrinsic and hydrogen-related defects. The comparison between the two irradiation sources highlights close similarities among the spectroscopic properties of the induced defects and the linear correlation of their concentration up to 1016 n/cm2. These r…
Investigation of Coating Impact on OFDR Optical Remote Fiber-Based Sensors Performances for Their Integration in High Temperature and Radiation Environments
The response of optical frequency-domain reflectometry-based temperature sensors is here investigated in harsh environments (high temperature, high radiation dose) focusing the attention on the impact of the fiber coating on the sensor performances in such conditions. Our results demonstrate that the various coating types evolve differently under thermal treatment and/or radiations, resulting in a small (<5%) change in the temperature coefficient of the sensor. The identified procedure, consisting of a prethermal treatment of the fiber at its maximum coating operating temperature, is here verified up to 150 °C for higherature acrylate and up to 300 °C for polyamide coating. This method allo…
Combined High Dose and Temperature Radiation Effects on Multimode Silica-Based Optical Fibers
International audience; We investigate the response of Ge-doped, P-doped, pure-silica, or Fluorine-doped fibers to extreme environments combining doses up to MGy(SiO $_{{{2}}}$) level of 10 keV X-rays and temperatures between 25 C and 300 C . First, we evaluate their potential to serve either as parts of radiation tolerant optical or optoelectronic systems or at the opposite, for the most sensitive ones, as punctual or distributed dosimeters. Second, we improve our knowledge on combined ionizing radiations and temperature (R&T) effects on radiation-induced attenuation (RIA) by measuring the RIA spectra in the ultraviolet and visible domains varying the R&T conditions. Our results reveal the…
Radiation Response of OFDR Distributed Sensors Based on Microstructured Pure Silica Optical Fibers
International audience; Temperature sensors based on microstructured pure silica optical fibers are investigated by OFDR and RIA performed during X-ray irradiation up to 50kGy dose. The results evidence that the temperature measures are poorly influenced by irradiation (the error being less than 0.3°C). Such a radiation tolerance is relevant for the use of these Rayleigh based sensors in harsh environments.
Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels
International audience; We report a method for fabricating fiber Bragg gratings (FBG) resistant to very severe environments mixing high radiation doses (up to 3 MGy) and high temperatures (up to 230 degrees C). Such FBGs have been written in two types of radiation resistant optical fibers (pure-silica and fluorine-doped cores) by exposures to a 800 nm femtosecond IR laser at power exceeding 500 mW and then subjected to a thermal annealing treatment of 15 min at 750 degrees C. Under radiation, our study reveals that the radiation induced Bragg wavelength shift (BWS) at a 3 MGy dose is strongly reduced compared to responses of FBGs written with nonoptimized conditions. The BWS remains lower t…
Radiation Vulnerability of Fiber Bragg Gratings in Harsh Environments
International audience; The difficulties encountered in the implementation of a temperature or strain sensor based on fiber Bragg grating (FBG) in a harsh radiative environment are introduced. We present the choices made to select both a radiation-resistant fiber in terms of transmission and also the grating inscription conditions necessary to write radiation tolerant FBGs in such fibers with a femtosecond laser. The radiation response of these gratings was also studied under radiation at dose up to 1 MGy. The comparison between Ge-free and Ge-doped fibers was highlighted.
Radiation Characterization of Optical Frequency Domain Reflectometry Fiber-Based Distributed Sensors
International audience; We studied the responses of fiber-basedtemperature and strain sensors related to Optical FrequencyDomain Reflectometry (OFDR) and exposed to high γ-ray dosesup to 10 MGy. Three different commercial fiber classes areused to investigate the evolution of OFDR parameters withdose, thermal treatment and fiber core/cladding composition.We find that the fiber coating is affected by both thermal andradiation treatments and this modification results in anevolution of the internal stress distribution inside the fiber that influences its temperature and strain Rayleigh coefficients. These two environmental parameters introduce a relative error up to 5% on temperature and strain…
Radiation hardening of FBG in harsh environments
International audience; The difficulties encountered in the implementation of a temperature or strain sensor based on Fiber Bragg Grating in a harsh radiative environment are introduced. We present the choices made to select both a radiation-resistant fiber in terms of transmission and also the grating inscription conditions necessary to write radiation tolerant FBGs in such fibers with a femto-second laser. The response of different classes of gratings was also studied under radiation at high doses (>1MGy). The comparison between F- and Ge-doped fibers was highlighted.