0000000000001527
AUTHOR
Léo Van Damme
Application of the Pontryagin maximum principle to the time-optimal control in a chain of three spins with unequal couplings
We solve a time-optimal control problem in a linear chain of three coupled spins 1/2 with unequal couplings. We apply the Pontryagin maximum principle and show that the associated Hamiltonian system is the one of a three-dimensional rigid body. We express the optimal control fields in terms of the components of the classical angular momentum of the rigid body. The optimal trajectories and the minimum control time are given in terms of elliptic functions and elliptic integrals.
The tennis racket effect in a three-dimensional rigid body
We propose a complete theoretical description of the tennis racket effect, which occurs in the free rotation of a three-dimensional rigid body. This effect is characterized by a flip ($\pi$- rotation) of the head of the racket when a full ($2\pi$) rotation around the unstable inertia axis is considered. We describe the asymptotics of the phenomenon and conclude about the robustness of this effect with respect to the values of the moments of inertia and the initial conditions of the dynamics. This shows the generality of this geometric property which can be found in a variety of rigid bodies. A simple analytical formula is derived to estimate the twisting effect in the general case. Differen…
Abelian Integrals: From the Tangential 16th Hilbert Problem to the Spherical Pendulum
In this chapter we deal with abelian integrals. They play a key role in the infinitesimal version of the 16th Hilbert problem. Recall that 16th Hilbert problem and its ramifications is one of the principal research subject of Christiane Rousseau and of the first author. We recall briefly the definition and explain the role of abelian integrals in 16th Hilbert problem. We also give a simple well-known proof of a property of abelian integrals. The reason for presenting it here is that it serves as a model for more complicated and more original treatment of abelian integrals in the study of Hamiltonian monodromy of fully integrable systems, which is the main subject of this chapter. We treat i…