0000000000001571

AUTHOR

Wolfgang Lück

ApproximatingL 2-invariants by their finite-dimensional analogues

LetX be a finite connectedCW-complex. Suppose that its fundamental group π is residually finite, i.e. there is a nested sequence ... ⊂ Г m + 1 ⊂ Г m ⊂ ... ⊂ π of in π normal subgroups of finite index whose intersection is trivial. Then we show that thep-thL 2-Betti number ofX is the limit of the sequenceb p(Xm)/[π:Г m ] whereb p(Xm) is the (ordinary)p-th Betti number of the finite covering ofX associated with Г m .

research product

L 2-topological invariants of 3-manifolds

We give results on theL2-Betti numbers and Novikov-Shubin invariants of compact manifolds, especially 3-manifolds. We first study the Betti numbers and Novikov-Shubin invariants of a chain complex of Hilbert modules over a finite von Neumann algebra. We establish inequalities among the Novikov-Shubin invariants of the terms in a short exact sequence of chain complexes. Our algebraic results, along with some analytic results on geometric 3-manifolds, are used to compute theL2-Betti numbers of compact 3-manifolds which satisfy a weak form of the geometrization conjecture, and to compute or estimate their Novikov-Shubin invariants.

research product

Counterexamples to the Kneser conjecture in dimension four.

We construct a connected closed orientable smooth four-manifold whose fundamental group is the free product of two non-trivial groups such that it is not homotopy equivalent toM 0#M 1 unlessM 0 orM 1 is homeomorphic toS 4. LetN be the nucleus of the minimal elliptic Enrique surfaceV 1(2, 2) and putM=N∪ ∂NN. The fundamental group ofM splits as ℤ/2 * ℤ/2. We prove thatM#k(S 2×S2) is diffeomorphic toM 0#M 1 for non-simply connected closed smooth four-manifoldsM 0 andM 1 if and only ifk≥8. On the other hand we show thatM is homeomorphic toM 0#M 1 for closed topological four-manifoldsM 0 andM 1 withπ 1(Mi)=ℤ/2.

research product