0000000000001587

AUTHOR

Antonio Rizzo

0000-0003-3037-5906

showing 5 related works from this author

Critical analysis of the spin-rotation constants of CF2 and CCl2: A theoretical investigation

2005

Quantum chemical ab initio calculations for the spin-rotation constants of difluorocarbene (CF2) and dichlorocarbene (CCl2) were carried out using coupled-cluster techniques with sequences of correlation-consistent basis sets. Theoretical best estimates were obtained using extrapolation to the complete basis-set limit and taking into account corrections for core correlation, additional diffuse functions and zero-point vibrational effects. It is demonstrated that such accurate theoretical estimates can be used either to support or to challenge the analysis of the experimental spectra and the reliability of the resulting data. 2005 Elsevier B.V. All rights reserved.

DifluorocarbeneBasis (linear algebra)ExtrapolationGeneral Physics and AstronomySpectral lineComputational physicschemistry.chemical_compoundchemistryAb initio quantum chemistry methodsLimit (mathematics)Physical and Theoretical ChemistryAtomic physicsRotation (mathematics)Spin-½Chemical Physics Letters
researchProduct

A computational study of some electric and magnetic properties of gaseous BF3 and BCl3

2005

We present the results of an extended computational study of the electric and magnetic properties connected to Cotton-Mouton birefringences, on the trifluoro- and trichloroborides in the gas phase. The electric dipole polarizabilities, magnetizabilities, quadrupole moments, and higher-order hypersusceptibilities—expressed as quadratic and cubic frequency-dependent response functions—are computed within Hartree-Fock, density-functional, and coupled-cluster response theories employing singly and doubly augmented correlation-consistent basis sets and London orbitals in the magnetic property calculations. The results, which illustrate the capability of time-dependent density-functional theory f…

BirefringenceBirefringenceCondensed matter physicsChemistryElectron correlationsGeneral Physics and AstronomyMagnetic susceptibilityBoron compounds; Polarisability Quadrupole moments ; HF calculations ; Density functional theory ; Coupled cluster calculations ; Electron correlations ; Magnetic anisotropy ; Magnetic susceptibility ; BirefringenceUNESCO::FÍSICA::Química físicaMagnetic susceptibilityMagnetic anisotropyDipoleAtomic orbitalBoron compoundsCoupled cluster calculationsQuadrupolePolarisability Quadrupole momentsDensity functional theoryDensity functional theoryPhysical and Theoretical ChemistryAtomic physicsAnisotropy:FÍSICA::Química física [UNESCO]HF calculationsMagnetic anisotropy
researchProduct

The Cotton-Mouton effect of Neon and Argon: a benchmark study using highly correlated coupled cluster wave functions

2004

The Cotton-Mouton effect (magnetic field induced linear birefringence) has been studied for neon and argon using state-of-the-art coupled cluster techniques. The coupled cluster singles, doubles and triples (CCSDT) approach has been used to obtain static benchmark results and the CC3 model with an approximate treatment of triple excitations to obtain frequency-dependent results. In the case of neon the effect of excitations beyond triples has also been estimated via coupled cluster calculations including quadruple excitations (CCSDTQ), pentuple excitations (CCSDTQP), etc. up to the full configuration-interaction level. The results obtained for the anisotropy of the hypermagnetizability Delt…

PhysicsArgonGeneral Physics and Astronomychemistry.chemical_elementMagnetic fieldNeonCoupled clusterchemistryExcited statePhysical and Theoretical ChemistryAtomic physicsAnisotropyWave functionCotton–Mouton effect
researchProduct

Theoretical Study of the 15- and 17-Electron Structures of Cyclopentadienylchromium(III) and Cyclopentadienylmolybdenum(III) Complexes. Dichloride an…

1997

International audience; The structure and the energetics of the model systems CpMX2(PH3) + PH3 ⇄ CpMX2(PH3)2 (Cp = cyclopentadienyl; M = Cr, Mo; X = Cl, CH3) are studied by performing Møller−Plesset second order (MP2) and density functional theory (DFT) calculations. Extended basis sets are employed in the geometry optimizations. The results indicate that the structural preference can be traced back to the competition between electron pairing stabilization and M−P bond dissociation energy along the spin doublet surface. At all levels of calculation, the energy splitting, a measure of the cost of pairing the electron during the promotion process from the quartet ground state to the excited d…

Electron pairEnergy010405 organic chemistryChemistryElectrical energy010402 general chemistryLigands01 natural sciencesBond-dissociation energyQuantum mechanics0104 chemical sciences[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryCrystallographyCyclopentadienyl complexComputational chemistryMetalsExcited statePairingDensity functional theory[CHIM.COOR]Chemical Sciences/Coordination chemistryPhysical and Theoretical ChemistryGround stateDoublet state
researchProduct

Accurate Nonlinear Optical Properties for Small Molecules

2006

During the last decade it became possible to calculate by quantum chemical ab initio methods not only static but also frequency-dependent properties with high accuracy. Today, the most important tools for such calculations are coupled cluster response methods in combination with systematic hierarchies of correlation consistent basis sets. Coupled cluster response methods combine a computationally efficient treatment of electron correlation with a qualitatively correct pole structure and frequency dispersion of the response functions. Both are improved systematically within a hierarchy of coupled cluster models. The present contribution reviews recent advances in the highly accurate calculat…

Physicssymbols.namesakeCoupled clusterBasis (linear algebra)Electronic correlationFaraday effectsymbolsAb initioExtrapolationElectronic structureStatistical physicsBasis set
researchProduct