0000000000001640

AUTHOR

Gaetano Assanto

Silica masks for improved surface poling of lithium niobate

Surface periodic poling of congruent lithium niobate was performed with the aid of photolithographically defined silica masks. The latter helped improving the control of duty cycle in the periodic domain poling, with 50:50 mark-to-space ratios. The role of silica was ascertained by numerically solving the Poisson equation.

research product

Parametric Solitons in Two-Dimensional Lattices of Purely Nonlinear Origin

We demonstrate spatial solitons via twin-beam second-harmonic generation in hexagonal lattices realized by poling lithium niobate planar waveguides. These simultons can be steered by acting on power, direction, and wavelength of the fundamental frequency input.

research product

Second-harmonic generation in surface periodically poled lithium niobate waveguides:On the role of multiphoton absorption

Second harmonic generation is investigated in lithium niobate channels realized by proton exchange and quasi-phase-matched by surface periodic-poling. The reduction in conversion efficiency at high powers is interpreted in terms of multi-photon absorption via two-color terms, yielding an estimate of the dominating three-photon process.

research product

Ultraviolet quasi-phase-matched second harmonic generation in surface periodically poled lithium niobate optical waveguides

The compatibility of low concentration (alpha-phase) proton exchange channel waveguides with electric field surface periodic poling of congruent lithium niobate (SPPLN) crystals has been experimentally demonstrated. With such waveguides, we obtained ultraviolet second harmonic generation (SHG) by first order quasi-phase-matching (QPM), a result made possible by the fabrication, on Z-cut LN crystals, of periodic structures with a pitch down to 750 nm. Nonlinear copropagating QPM-SHG measurements have been carried out on such structures. The pump source was a Ti:sapphire laser with a tunability range of 700-980 nm and a 40 GHz linewidth. We have measured UV continuous wave light at 390 nm by …

research product

Transverse nonlinear optics in heavy-metal-oxide glass

6 pags. ; 9 figs.

research product

Random quasi-phase-matched second-harmonic generation in periodically poled lithium tantalate

We observe second harmonic generation via random quasi-phase-matching in a 2.0 micron periodically poled, 1-cm-long, z-cut lithium tantalate. Away from resonance, the harmonic output profiles exhibit a characteristic pattern stemming from a stochastic domain distribution and a quadratic growth with the fundamental excitation, as well as a broadband spectral response. The results are in good agreement with a simple model and numerical simulations in the undepleted regime, assuming an anisotropic spread of the random nonlinear component. (C) 2010 Optical Society of America

research product

Spatial Solitons in Quadratic 2D Nonlinear Photonic Crystals

We report on the first investigations into parametric solitary-wave formation in 2D nonlinear photonic crystals and present experimental results obtained in an hexagonally poled LiNbO3 waveguide designed for twin-beam second harmonic generation at telecom wavelengths.

research product

Backward frequency doubling of near infrared picosecond pulses.

We report on backward second-harmonic generation using ps laser pulses in congruent lithium niobate with 3.2 µm periodic poling. Three resonant peaks were measured between 1530 and 1730 nm, corresponding to 16th, 17th and 18th quasi-phase-matching orders in the backward configuration, with a conversion efficiency of 4.75 x 10(-5%)/W for the 16th order. We could also discriminate the contributions from inverted domains randomized in duty-cycle.

research product

Random quasi-phase-matched second harmonic generation in periodically poled lithium tantalate

We experimentally observed and explained bulk second harmonic generation via random quasi-phase-matching, derived from a periodically poled lithium tantalate sample with a randomly patterned mark-to-space-ratio.

research product

Soft proton exchanged channel waveguides in congruent lithium tantalate for frequency doubling

We report on stable optical waveguides fabricated by soft-proton exchange in periodically-poled congruent lithium tantalate in the a-phase. The channel waveguides are characterized in the telecom wavelength range in terms of both linear properties and frequency doubling. The measurements yield a nonlinear coefficient of about 9.5pm/V, demonstrating that the nonlinear optical properties of lithium tantalate are left nearly unaltered by the process. (C) 2010 Optical Society of America

research product

Light self-confinement via second harmonic generation in a 2D nonlinear photonic crystal waveguide

Spatial solitary waves induced by quadratic nonlinearities have been the subject of many theoretical and experimental investigations in the last decade, with extensive studies being devoted to soliton formation in 1D nonlinear photonic crystals (NPC) such as PPLN (periodically poled LiNbO3). Here we present results on a new class of (1 + 1)D spatial solitary waves, the first examples of quadratic self-confinement in a 2D NPC.

research product

Stable proton exchanged waveguides in Lithium Tantalate

alpha, beta(1), and kappa(2) phases are investigated for planar waveguide fabrication by proton exchange in congruent lithium tantalate. The effective indices of planar waveguide eigenmodes were monitored over time, revealing that the exchange process induces aging instabilities in all phases except alpha.

research product

Spatial Soliton Dynamics in Two-Dimensional Quadratic Photonic Crystals

We present a theoretical and experimental investigation of soliton dynamics associated to twin-beam second harmonic generation in a purely nonlinear two-dimensional planar photonic lattice in LiNbO3.

research product

Parametric self-trapping in the presence of randomized quasi phase matching

We report on experimental evidence of parametric spatial solitons in a quadratic crystal with randomized periodic ferroelectric poling. Two-color self-focusing via quadratic cascading overcomes the diffractive nature of both fundamental and frequency-doubled beams.

research product

In situ tuning of a photonic band gap with laser pulses

We report on light-induced optical tuning of colloidal photonic crystals doped with gold nanoparticles (Au-nps). By resonantly exciting the Au-np surface plasmon absorption with picosecond pulses at 0.53 micron in a standard pump-probe setup, we observed permanent changes in the stop band resonance around 1.7 micron, with blue wavelength shifts as large as 30 nm and associated to a nanoparticle reshaping. Fine tuning was achieved by controlling either the pulse energy or the irradiation time.

research product

Nanopatterned ferroelectric crystals for parametric generation

We report on recent results by surface periodic poling on lithium niobate and lithium tantalate. Such approach allows periodic inversion of the second order susceptibility with nanoscale features using insulating masks. We achieved a world-best 200 nm feature size, as well as good compatibility with alpha-phase proton exchanged channel waveguides in lithium niobate. Preliminary results of surface periodic poling in lithium tantalate also show similar characteristics. Surface poling is best suited for integrated optics devices in technologically-demanding configurations such as backward second harmonic generation and counter propagating optical parametric amplification

research product

Short period Lithium Niobate poling for nonlinear three waves interactions

research product

Second harmonic generation in coupled LiNbO3 waveguides by reverse-proton exchange

We demonstrate second harmonic generation of a near-infrared pump in a nonlinearly coupled system formed by longitudinally uniform proton- and reverse-proton-exchanged LiNbO/sub 3/ planar waveguides. Phase- and mode-matched transverse electric (TE/sub 0/) frequency doubling into transverse magnetic higher order guided modes is achieved through temperature control, in agreement with the model.

research product

Interacting Solitons in a High Index Glass

We investigate the interaction of two coherent 2D+1 solitary beams in a high index glass.

research product

Nonlinear Disorder Mapping Through Three-Wave Mixing

We implement a simple and powerful approach to characterize the domain distribution in the bulk of quadratic ferroelectric crystals via far-field second-harmonic spectroscopy. The approach is demonstrated in a lithium tantalate sample with periodic electric field poling and random mark-to-space ratio.

research product

Stable two -dimensional spatial solitons in heavy metal oxide glasses

In this Communication, a stable self-confined propagation with ps near-infrared (NIR) pulses and over several Rayleigh lengths is demonstrated for the first time . Multiphoton absorption is shown to saturate the self-focusing response in a novel glass of the ternary system Nb2O5-O2-PbO (NPG) exhibiting a high refractive index (2-2.1) in the NIR and an energy gap of 3.52 eV. NPG belongs to the family of heavy metal oxides, widely studied for its fast and high nonlinearity in the infrared.

research product

Surface Periodic Poling in Lithium Niobate and Lithium Tantalate

Periodic Poling of Lithium Niobate crystals (PPLN) by means of electric field has revealed the best technique for finely tailoring PPLN structures and parameters, which play a central role in many current researches in the field of nonlinear integrated optics. Besides the most studied technique of bulk poling, recently a novel technique where domain inversion occurs just in a surface layer using photoresist or silica masks has been devised and studied. This surface periodic poling (SPP) approach is best suited when light is confined in a thin surface guiding layer or stripe, as in the case of optical waveguide devices. Also, we found that SPP respect to bulk poling offers two orders of magn…

research product

Ultraviolet generation in periodically poled Lithium Tantalate waveguides

We demonstrate ultraviolet generation in lithium tantalate channel waveguides for frequency doubling via quasi-phase-matching. The samples, proton exchanged and nanostructured by electric-field assisted surface periodic poling with domains as deep as 40 μm, yield continuous wave light at 365.4 nm with conversion efficiencies larger than 7.5% W-1 cm-2.

research product

UV parametric generation via quasi-phase-matching in Lithium Tantalate waveguides

research product

Surface Periodic Domain Engineering in Congruent Lithium Tantalate Crystals

First experiments with the novel electric field Surface Periodic Poling technique have been carried out on Lithium Tantalate. Optimal poling parameters gave 50:50 mark-to-space ratio in the micron scale with good uniformity and high repeatability.

research product

Nonlinear Disorder Mapping via Wave Mixing in poled Lithium Tantalate

We introduce and test a simple approach for the characterization of domain distribution in bulk quadratic ferroelectric crystals, specifically periodically poled Lithium Tantalate with random mark-to space ratio.

research product

Continuous-wave backward frequency doubling in periodically poled lithium niobate

We report on backward second-harmonic-generation in bulk periodically poled congruent lithium niobate with a 3.2 microns period. A tunable continuous-wave Ti:sapphire laser allowed us exciting two resonant quasi-phase-matching orders in the backward configuration. The resonances were also resolved by temperature tuning and interpolated with standard theory to extract relevant information on the sample.

research product

Nanotechnology in lithium niobate for integrated optic frequency conversion in the UV

In the domain of Earth Explorer satellites nanoengineered nonlinear crystals can optimize UV tunable solid-state laser converters. Lightweight sources can be based on Lithium Niobate (LN) domain engineering by electric field poling and guided wave interactions. In this Communication we report the preliminary experimental results and the very first demonstration of UltraViolet second-harmonic generation by first-order quasi-phase-matching in a surface-periodically-poled proton-exchanged LN waveguide. The pump source was a Ti-Sapphire laser with a tunability range of 700- 980 nm and a 40 GHz linewidth. We have measured UV continuous-wave light at 390 nm by means of a lock-in amplifier and of …

research product

Near-infrared spatial solitons in heavy metal oxide A glasses

We demonstrate two-dimensional spatial solitons excited by near-infrared picosecond pulses in Kerr-like heavy metal oxide glasses with a nonlinearity one order of magnitude larger than in fused silica. Solitons were obtained at 820 nm owing to the presence of multiphoton absorption, which prevented catastrophic collapse. © 2007 Optical Society of America.

research product

Parametric conversion in micrometer and sub-micrometer structured ferroelectric crystals by surface poling

We report on recent technological improvements concerning nonlinear patterning of lithium niobate and lithium tantalate in the micrometer and submicrometer scales using surface periodic poling for ferroelectric domain inversion. The fabricated samples were employed for frequency doubling via quasiphase-matching both in bulk and guided wave geometries, including forward and backward configurations and wavelength conversion in bands C and L. We also investigated short-period quasiperiodic samples with randomly distributed mark-to-space ratios.

research product

Guided-wave frequency doubling in surface periodically poled lithium niobate: competing effects

We carried out second-harmonic generation in quasi-phase-matched ? -phase lithium niobate channel waveguides realized by proton exchange and surface periodic poling. Owing to a limited ferroelectric domain depth, we could observe the interplay between second-harmonic generation and self-phase modulation due to cascading and cubic effects, resulting in a nonlinear resonance shift. Data reduction allowed us to evaluate both the quadratic nonlinearity in the near infrared as well as the depth of the uninverted domains. © 2007 Optical

research product

Bi-color spatial solitons in linearly uncoupled planar waveguides

We report on the observation of spatial optical simultons in a novel geometry consisting of two partially overlapped, linearly uncoupled planar waveguides in lithium niobate obtained by reverse proton exchange. Two orthogonally polarized modes are coupled through an off-diagonal tensor element of the quadratic nonlinearity, giving rise to second harmonic generation and mutual trapping via cascading. This phenomenon demonstrates a balance between diffraction and self-focusing for two orthogonal modes of different waveguides, and occurs at room temperature in longitudinally uniform waveguides.

research product

2D+1 spatial solitons in heavy metal oxide glass

Two-dimensional self-confinement of near-infrared picosecond pulsed beams is demonstrated in a novel heavy metal-oxide glass, three-photon absorption being the stabilization mechanism to prevent catastrophic collapse.

research product

Lithium niobate step-index waveguides for broadband second harmonic generation

We investigate modal phase matching in lithium niobate step-index waveguides for second harmonic generation. We predict doubling bandwidths as large as 110 nm and show that temperature tuning can compensate for any deviation from the designed film thickness. © World Scientific Publishing Company.

research product

Proton exchange channel waveguides compatible with surface domain engineering in Lithium Niobate crystals

First experiments of proton exchange channel waveguides compatible with electric field surface periodic poling of congruent lithium niobate crystals are addressed. Picosecond nonlinear copropagating QPM-SHG measurements have been carried out on such structures.

research product

Surface periodic poling in congruent lithium tantalate

The first demonstration of surface periodic poling of lithium tantalate at high voltages is reported. Periodic domain inversion with mark-to-space ratios close to the optimum 50:50 was successfully achieved down to micrometre periods with good uniformity and repeatability.

research product

Integrated frequency shifter in periodically poled lithium tantalate waveguide

A frequency shifting device is fabricated and tested in a ferroelectric waveguide in a low-photorefractivity crystal. Periodic poling for quasi-phase-matching and channels for operation in the near-infrared C-band were obtained in congruent lithium tantalate, demonstrating for the first time both wave confinement and two-stage parametric conversion in such waveguides.

research product

Quadratic solitons in 2D nonlinear photonic crystals

We report on the first observation of spatial solitons in a 2D nonlinear photonic crystal. The experiments were performed in an hexagonally poled LiNbO3 waveguide designed for second harmonic generation from ~1.55 micron.

research product

Nonlinear Disorder Mapping via Three Wave Mixing in Poled Lithium Tantalate

We introduce and test a simple approach for the characterization of domain distribution in bulk quadratic ferroelectric crystals, such as periodically poled Lithium Tantalate with random mark-to space ratio.

research product

Features of randomized electric-field assisted domain inversion in lithium tantalate

We report on bulk and guided-wave second-harmonic generation via random Quasi-Phase-Matching in Lithium Tantalate. By acquiring the far-field profiles at several wavelengths, we extract statistical information on the distribution of the quadratic nonlinearity as well as its average period, both at the surface and in the bulk of the sample. By investigating the distribution in the two regions we demonstrate a non-invasive approach to the study of poling dynamics.

research product

Parametric solitons in nonlinear photonic crystals

We present theoretical and experimental investigations on the soliton dynamics associated to multiple second harmonic generation resonances in two-dimensional nonlinear photonic crystals, highlighting a wealth of new possibilities for soliton management in such structures.

research product

Frequency doubling in surface periodically poled lithium niobate waveguides: Competing effects

We fabricated α-phase pro ton-exchanged (PE) lithium niobate (LN) channel waveguides quasi phase-matched (QPM) via surface periodic poling (SPP) and carried out the first experimental demonstration of second harmonic generation (SHG) in such devices.[1] Experiments were performed by employing an optical parametric amplifier/oscillator producing 25 ps pulses in the range 1.1-1.6 μm with a line-width less than 2cm−1 and a repetition rate of 10Hz. SHG measurements were performed either at a fixed wavelength by varying the fundamental frequency (FF) input power or by scanning the FF wavelength, ratioing the second harmonic (SH) output to the FF input to obtain the conversion efficiency. By repe…

research product