0000000000001889

AUTHOR

Alejandro Sonzogni

Proton radioactivity of117La

A new more precise measurement of the ground-state proton decay of ${}^{117}\mathrm{La}$ is presented $[{E}_{p}=806(5) \mathrm{keV},$ ${t}_{1/2,p}=26(3)$ ms]. ${}^{117}\mathrm{La}$ was produced via the $p4n$ fusion-evaporation channel by bombarding a ${}^{64}\mathrm{Zn}$ target with 310 and 295 MeV ${}^{58}\mathrm{Ni}$ beams. The proton decay rate is consistent with emission from a prolate deformed ${3/2}^{+}$ or ${3/2}^{\ensuremath{-}}$ Nilsson state. No evidence is found for a previously reported proton decay from a high spin isomer in ${}^{117}\mathrm{La}.$ An upper limit for the production cross section for proton decay of ${}^{116}\mathrm{La}$ at a bombarding energy of 325 MeV was esta…

research product

Development of a Reference Database for Beta-Delayed Neutron Emission

Beta-delayed neutron emission is important for nuclear structure and astrophysics as well as for reactor applications. Significant advances in nuclear experimental techniques in the past two decades have led to a wealth of new measurements that remain to be incorporated in the databases. We report on a coordinated effort to compile and evaluate all the available beta-delayed neutron emission data. The different measurement techniques have been assessed and the data have been compared with semi-microscopic and microscopic-macroscopic models. The new microscopic database has been tested against aggregate total delayed neutron yields, time-dependent group parameters in 6-and 8-group re-present…

research product

Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

Volume: 111 Host publication title: WONDER-2015 Host publication sub-title: 4TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR REACTOR APPLICATIONS Isbn(print): 978-2-7598-1970-6 Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. Rb-92,Rb-93 are two fission products of importance in reactor antineutrino spectra and decay heat, but their beta-decay properti…

research product

Total absorption spectroscopy of fission fragments relevant for reactor antineutrino spectra

International audience; The accurate determination of reactor antineutrino spectra remains a very active research topic for which new methods of study have emerged in recent years. Indeed, following the long-recognized reactor anomaly (measured antineutrino deficit in short baseline reactor experiments when compared with spectral predictions), the three international reactor neutrino experiments Double Chooz, Daya Bay and Reno have recently demonstrated the existence of spectral distortions in their measurements with respect to the same predictions. These spectral predictions were obtained through the conversion of integral beta-energy spectra obtained at the ILL research reactor. Several s…

research product

β-decay data requirements for reactor decay heat calculations: study of the possible source of the gamma-ray discrepancy in reactor heat summation calculations

The decay heat of fission products plays an important role in predictions of the heat up of nuclear fuel in reactors. The released energy is calculated as the summation of the activities of allfission products P(t) = Ei λi Ni(t), where Ei is the decay energy of nuclide i (gamma and beta component), λi is the decay constant of nuclide i and Ni(t) is the number of nuclide i at cooling time t. Even though the reproduction of the measured decay heat has improved in recent years, there is still a long standing discrepancy in the t ∼ 1000s cooling time for some fuels. A possible explanation to this improper description has been found in the work of Yoshida et al. (1), where it has been shown that…

research product

Summation Calculations for Reactor Antineutrino Spectra, Decay Heat and Delayed Neutron Fractions Involving New TAGS Data and Evaluated Databases

9 pags., 3 figs. -- Open Access funded by Creative Commons Atribution Licence 4.0

research product

Improvements on Decay Heat Summation Calculations by Means of Total Absorption Gamma-ray Spectroscopy Measurements

The decay heat of fission products plays an important role in predictions of the heat released by nuclear fuel in reactors. In this contribution we present results of the analysis of the measurement of the beta decay of some refractory isotopes that were considered possible important contributors to the decay heat in reactors. The measurements presented here were performed at the IGISOL facility of the University of Jyvaeskylae, Finland. In our measurements we have combined for the first time a Penning trap (JYFLTRAP), which was used as a high resolution isobaric separator, with a total absorption spectrometer. The results of the measurements as well as their consequences for decay heat sum…

research product

A new reference database for beta-delayed neutrons

International audience; A new database containing all available experimental and evaluated β-delayed neutron data is presented in this paper. The database is the product of an international effort coordinated by the International Atomic Energy Agency. It comprises a microscopic section including all available experimental data on beta-decay half-lives, β-delayed neutron emission probabilities and spectra, as well as new systematics and global theoretical calculations for comparison. The beta-delayed neutron data for individual precursors have been benchmarked against available data on macroscopic properties such as total delayed-neutron yields and spectra, delayed-neutron decay curves and t…

research product

Compilation and Evaluation of Beta-Delayed Neutron Emission Probabilities and Half-Lives for Z > 28 Precursors

Abstract We present a compilation and evaluation of experimental β-delayed neutron emission probabilities (Pn) and half-lives (T1/2) for known or potential β-delayed neutron precursors with atomic number Z > 28 (73Cu–233Fr). This article includes the recommended values of both of these quantities, together with a compilation of experimental measurements when available. Some notable cases, as well as proposed standards for β-delayed neutron measurements are also discussed. Evaluated data has also been compared to systematics using three different approaches. The literature cut-off date for this work is August 15, 2020.

research product