0000000000002007

AUTHOR

Andris Berzins

showing 19 related works from this author

Investigation of temperature dependence of magnetic properties of Cr$_2$O$_3$ thin film structure using a magnetic field imaging technique based on N…

2020

This work presents a magnetic field imaging method based on color centres in diamond crystal applied to thin film structure. To demonstrate the capacity of our device we have used it for characterization of magnetic properties in microscopic scale of Cr$_2$O$_3$ thin film structure above and below N\'eel temperature. The obtained measurement results clearly identify the detection of the magnetic phase transition of Cr$_2$O$_3$ thin film with an unexpected diamagnetic like behaviour at 19$^{\circ}$C (below the N\'eel temperature of Cr$_2$O$_3$). To have better insights in the magnetic fields created by the thin films we present simulations of the magnetic fields near the thin film surface. W…

Condensed Matter::Materials ScienceFOS: Physical sciencesPhysics - Applied PhysicsApplied Physics (physics.app-ph)
researchProduct

Dynamic $^{14}\rm N$ nuclear spin polarization in nitrogen-vacancy centers in diamond

2020

We studied the dynamic nuclear spin polarization of nitrogen in negatively charged nitrogen-vacancy (NV) centers in diamond both experimentally and theoretically over a wide range of magnetic fields from 0 to 1100 G covering both the excited-state level anti-crossing and the ground-state level anti-crossing magnetic field regions. Special attention was paid to the less studied ground-state level anti-crossing region. The nuclear spin polarization was inferred from measurements of the optically detected magnetic resonance signal. These measurements show that a very large (up to $96 \pm 2\%$) nuclear spin polarization of nitrogen can be achieved over a very broad range of magnetic field start…

Quantum PhysicsFOS: Physical sciencesQuantum Physics (quant-ph)
researchProduct

Magnetic Field Gradiometer with Sub-Micron Spatial Resolution Based on Caesium Vapour in an Extremely Thin Cell

2015

Abstract In this paper we present a device for measuring the magnetic field and its gradient with a spatial resolution of several hundred nanometres. This device is based on caesium metal vapour confined to an extremely thin cell (ETC). To measure magnetic signals, we use absorption and very low laser powers, which might be appealing for modern fabrication techniques. A portable, fully automated device was constructed.

Materials sciencebusiness.industryMagnetometerGeneral EngineeringGeneral Physics and Astronomychemistry.chemical_elementGradiometerlcsh:QC1-999Magnetic fieldlaw.inventionmeasurements of magnetic field gradientOpticschemistrylawCaesiummagnetometermagneto-optical resonancesextremely thin cellbusinessImage resolutionlcsh:PhysicsLatvian Journal of Physics and Technical Sciences
researchProduct

Longitudinal spin-relaxation in nitrogen-vacancy centers in electron irradiated diamond

2015

We present systematic measurements of longitudinal relaxation rates ($1/T_1$) of spin polarization in the ground state of the nitrogen-vacancy (NV$^-$) color center in synthetic diamond as a function of NV$^-$ concentration and magnetic field $B$. NV$^-$ centers were created by irradiating a Type 1b single-crystal diamond along the [100] axis with 200 keV electrons from a transmission electron microscope with varying doses to achieve spots of different NV$^-$ center concentrations. Values of ($1/T_1$) were measured for each spot as a function of $B$.

TechnologyMaterials sciencePhysics and Astronomy (miscellaneous)Synthetic diamondFOS: Physical sciencesElectronengineering.materiallaw.inventionEngineeringquant-phlawVacancy defectcond-mat.mes-hallMesoscale and Nanoscale Physics (cond-mat.mes-hall)Applied PhysicsQuantum PhysicsCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsSpin polarizationRelaxation (NMR)Materials Science (cond-mat.mtrl-sci)Diamondcond-mat.mtrl-sciTransmission electron microscopyPhysical SciencesengineeringAtomic physicsQuantum Physics (quant-ph)Ground stateApplied Physics Letters
researchProduct

Impact of Helium Ion Implantation Dose and Annealing on Dense Near-Surface Layers of NV Centers

2022

A. Berzins acknowledges support from Latvian Council of Science project lzp-2021/1-0379, “A novel solution for high magnetic field and high electric current stabilization using color centers in diamond,” and LLC “MikroTik” donation project, administered by the UoL foundation, “Improvement of Magnetic field imaging system” for the opportunity to significantly improve experimental setup as well as “Simulations for stimulation of science” for the opportunity to acquire COMSOL license. I. Fescenko acknowledges support from ERAF project 1.1.1.5/20/A/001, and I.F. and A.B. acknowledge support from LLC “MikroTik” donation project “Annealing furnace for the development of new nanometer-sized sensor…

Quantum PhysicsCondensed Matter - Materials Sciencenitrogen-vacancy centers; He ion implantation; diamond annealing; dense NV layersPhysics - Instrumentation and DetectorsCondensed Matter - Mesoscale and Nanoscale PhysicsGeneral Chemical Engineeringdiamond annealingMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences:NATURAL SCIENCES::Physics [Research Subject Categories]Instrumentation and Detectors (physics.ins-det)nitrogen-vacancy centersHe ion implantationMesoscale and Nanoscale Physics (cond-mat.mes-hall)General Materials Sciencedense NV layersQuantum Physics (quant-ph)Nanomaterials
researchProduct

Alignment-to-orientation conversion in a magnetic field at nonlinear excitation of theD2line of rubidium: Experiment and theory

2015

We studied alignment-to-orientation conversion caused by excited-state level crossings in a nonzero magnetic field of both atomic rubidium isotopes. Experimental measurements were performed on the transitions of the $D_2$ line of rubidium. These measured signals were described by a theoretical model that takes into account all neighboring hyperfine transitions, the mixing of magnetic sublevels in an external magnetic field, the coherence properties of the exciting laser radiation, and the Doppler effect. In the experiments laser induced fluorescence (LIF) components were observed at linearly polarized excitation and their difference was taken afterwards. By observing the two oppositely circ…

PhysicsAtomic Physics (physics.atom-ph)business.industryLinear polarizationFOS: Physical scienceschemistry.chemical_elementLaserAtomic and Molecular Physics and OpticsIsotopes of rubidiumPhysics - Atomic Physicslaw.inventionRubidiumMagnetic fieldOpticschemistrylawPhysics::Atomic PhysicsAtomic physicsbusinessHyperfine structureExcitationCoherence (physics)Physical Review A
researchProduct

Hyperfine level structure in nitrogen-vacancy centers near the ground-state level anticrossing

2019

Energy levels of nitrogen-vacancy centers in diamond were investigated using optically detected magnetic-resonance spectroscopy near the electronic ground-state level anticrossing (GSLAC) at an axial magnetic field around 102.4~mT in diamond samples with a nitrogen concentration of 1~ppm and 200~ppm. By applying radiowaves in the frequency ranges from 0 to 40 MHz and from 5.6 to 5.9 GHz, we observed transitions that involve energy levels mixed by the hyperfine interaction. We developed a theoretical model that describes the level mixing, transition energies, and transition strengths between the ground-state sublevels, including the coupling to the nuclear spin of the NV center\textquotesing…

PhysicsQuantum PhysicsSpinsCondensed Matter - Mesoscale and Nanoscale PhysicsDiamondFOS: Physical sciences02 engineering and technologyengineering.material021001 nanoscience & nanotechnologyPolarization (waves)7. Clean energy01 natural sciencesSpectral line3. Good healthVacancy defect0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)engineeringAtomic physics010306 general physics0210 nano-technologySpectroscopyGround stateQuantum Physics (quant-ph)Hyperfine structure
researchProduct

Magnetic field microscopy with concentrated bias field

2021

Materials scienceMagnetic field imagingCondensed matter physicsMicroscopyBias fieldMagnetic fieldOptical Instrument Science, Technology, and Applications II
researchProduct

Detection of magnetic thin film impurity phases using nitrogen vacancy centers in diamond crystal

2019

We demonstrate the possibility to detect magnetic impurity phases in thin films using magnetic field imaging technique based on a layer of nitrogen-vacancy centers in the diamond lattice. We demonstrate results of magnetic field distributions created by impurity phases as well as mechanical defects on the thin film surface.

Materials scienceCondensed matter physicsDiamondengineering.materialMagnetic fieldCondensed Matter::Materials ScienceMagnetic field imagingImpurityCondensed Matter::SuperconductivityVacancy defectengineeringDiamond cubicThin filmMagnetic impuritySymposium Latsis 2019 on Diamond Photonics - Physics, Technologies and Applications
researchProduct

Dependence of the shapes of nonzero-field level-crossing signals in rubidium atoms on the laser frequency and power density

2013

We studied magneto-optical resonances caused by excited-state level crossings in a nonzero magnetic field. Experimental measurements were performed on the transitions of the ${D}_{2}$ line of rubidium. These measured signals were described by a theoretical model that takes into account all neighboring hyperfine transitions, the mixing of magnetic sublevels in an external magnetic field, the coherence properties of the exciting laser radiation, and the Doppler effect. Good agreement between the experimental measurements and the theoretical model could be achieved over a wide range of laser power densities. We further showed that the contrasts of the level-crossing peaks can be sensitive to c…

Physicschemistry.chemical_elementLaserAtomic and Molecular Physics and OpticsMagnetic fieldlaw.inventionRubidiumsymbols.namesakechemistrylawsymbolsPhysics::Atomic PhysicsLaser power scalingAtomic physicsHyperfine structureDoppler effectCoherence (physics)Doppler broadeningPhysical Review A
researchProduct

Dynamic N14 nuclear spin polarization in nitrogen-vacancy centers in diamond

2020

We studied the dynamic nuclear spin polarization of nitrogen in negatively charged nitrogen-vacancy (NV) centers in diamond both experimentally and theoretically over a wide range of magnetic fields from 0--1100 G covering both the excited-state level anticrossing and the ground-state level anticrossing magnetic field regions. Special attention was paid to the less studied ground-state level anticrossing region. The nuclear spin polarization was inferred from measurements of the optically detected magnetic resonance signal. These measurements show that a very large (up to $96\ifmmode\pm\else\textpm\fi{}2%$) nuclear spin polarization of nitrogen can be achieved over a very broad range of mag…

PhysicsSpin polarizationchemistry.chemical_elementDiamond02 engineering and technologyengineering.material021001 nanoscience & nanotechnologyPolarization (waves)01 natural sciencesNitrogenMagnetic fieldchemistryVacancy defect0103 physical sciencesengineeringAtomic physics010306 general physics0210 nano-technologyExcitationPhysical Review B
researchProduct

Conversion of bright magneto-optical resonances into dark resonances at fixed laser frequency forD2excitation of atomic rubidium

2012

Nonlinear magneto-optical resonances on the hyperfine transitions belonging to the ${D}_{2}$ line of rubidium were changed from bright to dark resonances by changing the laser power density of the single exciting laser field or by changing the vapor temperature in the cell. In one set of experiments atoms were excited by linearly polarized light from an extended cavity diode laser with polarization vector perpendicular to the light's propagation direction and magnetic field, and laser-induced fluorescence was observed along the direction of the magnetic field, which was scanned. A low-contrast bright resonance was observed at low laser power densities when the laser was tuned to the ${F}_{g…

PhysicsResonanceLaserPolarization (waves)Atomic and Molecular Physics and OpticsMagnetic fieldlaw.inventionlawExcited statePhysics::Atomic PhysicsAtomic physicsHyperfine structureExcitationCircular polarizationPhysical Review A
researchProduct

Level anti-crossing magnetometry with color centers in diamond

2017

Recent developments in magnetic field sensing with negatively charged nitrogen-vacancy centers (NV) in diamond employ magnetic-field (MF) dependent features in the photoluminescence (PL) and eliminate the need for microwaves (MW). Here, we study two approaches towards improving the magnetometric sensitivity using the ground-state level anti-crossing (GSLAC) feature of the NV center at a background MF of 102.4\,mT. Following the first approach, we investigate the feature parameters for precise alignment in a dilute diamond sample; the second approach extends the sensing protocol into absorption via detection of the GSLAC in the diamond transmission of a 1042\,nm laser beam. This leads to an …

PhotoluminescenceMaterials scienceMagnetometerMagnetismchemistry.chemical_elementFOS: Physical sciences02 engineering and technologyengineering.material01 natural scienceslaw.inventionNuclear magnetic resonancelaw0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physicsAbsorption (electromagnetic radiation)Quantum PhysicsCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryDiamond021001 nanoscience & nanotechnologyMeitneriumLaserchemistryengineeringOptoelectronics0210 nano-technologybusinessQuantum Physics (quant-ph)MicrowaveSlow Light, Fast Light, and Opto-Atomic Precision Metrology X
researchProduct

Relaxation mechanisms affecting magneto-optical resonances in an extremely thin cell: Experiment and theory for the cesiumD1line

2015

We have measured magneto-optical signals obtained by exciting the $D_1$ line of cesium atoms confined to an extremely thin cell (ETC), whose walls are separated by less than one micrometer, and developed an improved theoretical model to describe these signals with experimental precision. The theoretical model was based on the optical Bloch equations and included all neighboring hyperfine transitions, the mixing of the magnetic sublevels in an external magnetic field, and the Doppler effect, as in previous studies. However, in order to model the extreme conditions in the ETC more realistically, the model was extended to include a unified treatment of transit relaxation and wall collisions wi…

PhysicsAtomic Physics (physics.atom-ph)FOS: Physical scienceschemistry.chemical_elementLaserAtomic and Molecular Physics and OpticsPhysics - Atomic PhysicsD-1Magnetic fieldlaw.inventionsymbols.namesakechemistrylawCaesiumThermalsymbolsPhysics::Atomic PhysicsAtomic physicsDoppler effectSaturation (magnetic)Hyperfine structurePhysical Review A
researchProduct

Estimating the magnetic moment of microscopic magnetic sources from their magnetic field distribution in a layer of nitrogen-vacancy (NV) centres in …

2016

We have used a synthetic diamond with a layer of nitrogen-vacancy (NV) centres to image the magnetic field distributions of magnetic particles on the surface of the diamond. Magnetic field distributions of 4 µ m and 2 µ m ferromagnetic and 500 nm diameter superparamagnetic particles were obtained by measuring the position of the optically detected magnetic resonance peak in the fluorescence emitted by the NV centres for each pixel. We fitted the results to a model in order to determine the magnetic moment of the particles from the magnetic field image and compared the results to the measured magnetic moment of the particles. The best-fit magnetic moment differed from the value expected base…

PhysicsSynthetic diamondCondensed matter physicsMagnetic momentMagnetometerDiamond02 engineering and technologyengineering.material021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic Materialslaw.inventionMagnetic fieldNuclear magnetic resonanceFerromagnetismlaw0103 physical sciencesengineeringMagnetic nanoparticles010306 general physics0210 nano-technologyInstrumentationSuperparamagnetismThe European Physical Journal Applied Physics
researchProduct

Colloidal nanoparticle sorting and ordering on anodic alumina patterned surfaces using templated capillary force assembly

2017

Abstract A new, robust technique of size-selective nanoparticle ordering on porous anodized aluminum oxide (PAAO) templates is presented. Simultaneous particle sorting and array formation is achieved for the first time using a polydisperse suspension of irregularly shaped diamond nanocrystals. The array parameters can be tuned through a balance of evaporation driven particle flux, capillary, electrostatic, and adhesion forces, which are influenced by the asperities of the surface during the capillary and convective assembly dip-coating process. The resulting structures are dense (lower limit approximately 50 nm center separation), isolated (non-touching) nanoparticle arrays with a size dist…

Materials sciencePolydimethylsiloxaneAnodizingCapillary actionNanoparticleNanotechnology02 engineering and technologySurfaces and InterfacesGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesEvaporation (deposition)Dip-coating0104 chemical sciencesSurfaces Coatings and Filmschemistry.chemical_compoundchemistryMaterials Chemistry0210 nano-technologyPorosityNanodiamondSurface and Coatings Technology
researchProduct

Surface magnetic structure investigation of a nanolaminated Mn$_2$GaC thin film using a magnetic field microscope based on Nitrogen-Vacancy centers

2021

This work presents a magnetic field imaging method based on color centers in diamond crystal applied to a thin film of a nanolaminated Mn$_2$GaC MAX phase. Magnetic properties of the surface related structures have been described around the first order transition at 214 K by performing measurements in the temperature range between 200 K and 235 K with the surface features fading out by increasing temperature above the transition temperature. The results presented here demonstrate how Nitrogen-Vacancy center based magnetic microscopy can supplement the traditionally used set of experimental techniques, giving additional information of microscopic scale magnetic field features, and allowing t…

Materials scienceMicroscopeCondensed matter physicsMagnetic structureTransition temperatureFOS: Physical sciencesPhysics - Applied PhysicsApplied Physics (physics.app-ph)Atmospheric temperature rangeCondensed Matter PhysicsMicroscopic scaleMagnetic fieldlaw.inventionMagnetic field imaginglawGeneral Materials ScienceThin filmDen kondenserade materiens fysikMAX phase thin films; Magnetic thin films; Nitrogen-Vacancy centers in diamond; Magnetic field microscopy
researchProduct

Cross-relaxation studies with optically detected magnetic resonances in nitrogen-vacancy centers in diamond in an external magnetic field

2020

In this paper cross-relaxation between nitrogen-vacancy (NV) centers and substitutional nitrogen in a diamond crystal was studied. It was demonstrated that optically detected magnetic resonance signals (ODMR) can be used to measure these signals successfully. The ODMR were detected at axial magnetic field values around 51.2~mT in a diamond sample with a relatively high (200~ppm) nitrogen concentration. We observed transitions that involve magnetic sublevels that are split by the hyperfine interaction. Microwaves in the frequency ranges from 1.3 GHz to 1.6 GHz ($m_S=0\longrightarrow m_S=-1$ NV transitions) and from 4.1 to 4.6 GHz ($m_S=0\longrightarrow m_S=+1$ NV transitions) were used. To u…

PhysicsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsDiamondFOS: Physical sciences02 engineering and technologyengineering.material021001 nanoscience & nanotechnology01 natural sciencesMagnetic fieldVacancy defect0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)engineeringMoleculeHyperpolarization (physics)Atomic physics010306 general physics0210 nano-technologyQuantum Physics (quant-ph)QuantumHyperfine structureMicrowave
researchProduct

Characterization of microscopic ferromagnetic defects in thin films using magnetic microscope based on Nitrogen-Vacancy centres

2020

In this work we present results acquired by applying magnetic field imaging technique based on Nitrogen-Vacancy centres in diamond crystal for characterization of magnetic thin films defects. We used the constructed wide-field magnetic microscope for measurements of two kinds of magnetic defects in thin films. One family of defects under study was a result of non-optimal thin film growth conditions. The magnetic field maps of several regions of the thin films created under very similar conditions to previously published research revealed microscopic impurity islands of ferromagnetic defects, that potentially could disturb the magnetic properties of the surface. The second part of the measur…

Materials scienceMicroscopeFOS: Physical sciencesApplied Physics (physics.app-ph)02 engineering and technology010402 general chemistry01 natural scienceslaw.inventionMagnetic field imaginglawVacancy defectDeposition (phase transition)General Materials ScienceThin filmCondensed matter physicsPhysics - Applied Physicsequipment and supplies021001 nanoscience & nanotechnologyCondensed Matter PhysicsWide-field magnetic microscopy; Ferromagnetic thin film; Surface defect characterization; Optically detected magnetic resonance; Nitrogen-vacancy centres in diamond0104 chemical sciencesMagnetic fieldCharacterization (materials science)Ferromagnetism0210 nano-technologyDen kondenserade materiens fysikhuman activitiesMaterials Chemistry and Physics
researchProduct