0000000000002145

AUTHOR

Volker Lohmann

0000-0001-8719-7608

Characterization of cell lines carrying self-replicating hepatitis C virus RNAs.

ABSTRACT Subgenomic selectable RNAs of the hepatitis C virus (HCV) have recently been shown to self-replicate to high levels in the human hepatoma cell line Huh-7 (V. Lohmann, F. Körner, J. O. Koch, U. Herian, L. Theilmann, and R. Bartenschlager, Science 285:110–113, 1999). Taking advantage of this cell culture system that allows analyses of the interplay between HCV replication and the host cell, in this study we characterized two replicon-harboring cell lines that have been cultivated for more than 1 year. During this time, we observed no signs of cytopathogenicity such as reduction of growth rates or ultrastructural changes. High levels of HCV RNAs were preserved in cells passaged under…

research product

Biochemical and Kinetic Analyses of NS5B RNA-Dependent RNA Polymerase of the Hepatitis C Virus

The biochemical properties of the RNA-dependent RNA polymerase (RdRp) of the hepatitis C virus were analyzed. A hexahistidine affinity-tagged NS5B fusion protein was expressed with recombinant baculoviruses in insect cells and purified to near homogeneity. Enzymatic activity of the purified protein was inhibited by KCl or high concentrations of NaCl and was absolutely dependent on Mg2+, which could be replaced by Mn2+. NS5B was found to be processive and able to copy long heteropolymeric templates with an elongation rate of 150-200 nucleotides/min at 22 degreesC. Kinetic constants were determined for all four nucleoside triphosphates and different templates. In case of a heteropolymeric RNA…

research product

Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line.

An estimated 170 million persons worldwide are infected with hepatitis C virus (HCV), a major cause of chronic liver disease. Despite increasing knowledge of genome structure and individual viral proteins, studies on virus replication and pathogenesis have been hampered by the lack of reliable and efficient cell culture systems. A full-length consensus genome was cloned from viral RNA isolated from an infected human liver and used to construct subgenomic selectable replicons. Upon transfection into a human hepatoma cell line, these RNAs were found to replicate to high levels, permitting metabolic radiolabeling of viral RNA and proteins. This work defines the structure of HCV replicons funct…

research product

Mutations in hepatitis C virus RNAs conferring cell culture adaptation.

ABSTRACT As an initial approach to studying the molecular replication mechanisms of hepatitis C virus (HCV), a major causative agent of acute and chronic liver disease, we have recently developed selectable self-replicating RNAs. These replicons lacked the region encoding the structural proteins and instead carried the gene encoding the neomycin phosphotransferase. Although the replication levels of these RNAs within selected cells were high, the number of G418-resistant colonies was reproducibly low. In a search for the reason, we performed a detailed analysis of replicating HCV RNAs and identified several adaptive mutations enhancing the efficiency of colony formation by several orders of…

research product

Replication of hepatitis C virus

research product

Selective Stimulation of Hepatitis C Virus and Pestivirus NS5B RNA Polymerase Activity by GTP

NS5B of the hepatitis C virus is an RNA template-dependent RNA polymerase and therefore the key player of the viral replicase complex. Using a highly purified enzyme expressed with recombinant baculoviruses in insect cells, we demonstrate a stimulation of RNA synthesis up to 2 orders of magnitude by high concentrations of GTP but not with ATP, CTP, UTP, GDP, or GMP. Enhancement of RNA synthesis was found with various heteropolymeric RNA templates, with poly(C)-oligo(G)12 but not with poly(A)-oligo(U)12. Several amino acid substitutions in polymerase motifs B, C, and D previously shown to be crucial for RdRp activity were tested for GTP stimulation of RNA synthesis. Most of these mutations, …

research product

Sequences in the 5′ Nontranslated Region of Hepatitis C Virus Required for RNA Replication

ABSTRACT Sequences in the 5′ and 3′ termini of plus-strand RNA viruses harbor cis -acting elements important for efficient translation and replication. In case of the hepatitis C virus (HCV), a plus-strand RNA virus of the family Flaviviridae , a 341-nucleotide-long nontranslated region (NTR) is located at the 5′ end of the genome. This sequence contains an internal ribosome entry site (IRES) that is located downstream of an about 40-nucleotide-long sequence of unknown function. By using our recently developed HCV replicon system, we mapped and characterized the sequences in the 5′ NTR required for RNA replication. We show that deletions introduced into the 5′ terminal 40 nucleotides abolis…

research product

Persistent and Transient Replication of Full-Length Hepatitis C Virus Genomes in Cell Culture

ABSTRACT The recently developed subgenomic hepatitis C virus (HCV) replicons were limited by the fact that the sequence encoding the structural proteins was missing. Therefore, important information about a possible influence of these proteins on replication and pathogenesis and about the mechanism of virus formation could not be obtained. Taking advantage of three cell culture-adaptive mutations that enhance RNA replication synergistically, we generated selectable full-length HCV genomes that amplify to high levels in the human hepatoma cell line Huh-7 and can be stably propagated for more than 6 months. The structural proteins are efficiently expressed, with the viral glycoproteins E1 and…

research product

Enhancement of hepatitis C virus RNA replication by cell culture-adaptive mutations.

ABSTRACT Studies of the Hepatitis C virus (HCV) replication cycle have been made possible with the development of subgenomic selectable RNAs that replicate autonomously in cultured cells. In these replicons the region encoding the HCV structural proteins was replaced by the neomycin phosphotransferase gene, allowing the selection of transfected cells that support high-level replication of these RNAs. Subsequent analyses revealed that, within selected cells, HCV RNAs had acquired adaptive mutations that increased the efficiency of colony formation by an unknown mechanism. Using a panel of replicons that differed in their degrees of cell culture adaptation, in this study we show that adaptive…

research product

In vitro studies on the activation of the hepatitis C virus NS3 proteinase by the NS4A cofactor.

AbstractProteolytic processing of the nonstructural proteins of the hepatitis C virus (HCV) is mediated by two viral proteinases: the NS2-3 proteinase cleaving at the NS2/3 junction and the NS3 serine-type proteinase responsible for processing at the NS3/4A, NS4A/B, NS4B/5A, and NS5A/B sites. Activity of the NS3 proteinase is modulated by NS4A. In the absence of this cofactor processing at the NS3-dependent sites does not occur or, in the case of the NS5A/B junction, is poor but increased when NS4A is present. Although recent studies demonstrated that proteinase activation requires direct interaction between NS3 and NS4A, the mechanism by which NS4A exerts the activation function is not kno…

research product

RAPID AND EFFICIENT ANTIGEN PROCESSING AND PRESENTATION OF A PROTECTIVE AND IMMUNODOMINANT HLA-B*27-RESTRICTED HEPATITIS C VIRUS-SPECIFIC CD8+T CELL EPITOPE

HLA-B*27 exerts protective effects in hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infections. While the immunological and virological features of HLA-B*27-mediated protection are not fully understood, there is growing evidence that the presentation of specific immunodominant HLA-B*27-restricted CD8+ T-cell epitopes contributes to this phenomenon in both infections. Indeed, protection can be linked to single immunodominant CD8+ T-cell epitopes and functional constraints on escape mutations within these epitopes. To better define the immunological mechanisms underlying HLA-B*27-mediated protection in HCV infection, we analyzed the functional avidity, functional profile, ant…

research product

Interferon-γ inhibits replication of subgenomic and genomic hepatitis C virus RNAs

Persistent infection with hepatitis C virus (HCV) is a major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. All treatments known so far rely on the antiviral activity of interferon alfa (IFN-alpha) that is given alone or in combination with ribavirin. Unfortunately, only a fraction of the patients clear the virus during therapy and for those who do not respond there is currently no alternative treatment. Selectable subgenomic HCV RNAs (replicons) have been recently used to investigate the effect of IFN-alpha on HCV replication. However, it has not yet been analyzed whether other cytokines also play a role in the innate immune response against HCV. Here we show th…

research product

Complex formation between the NS3 serine-type proteinase of the hepatitis C virus and NS4A and its importance for polyprotein maturation

Processing of the hepatitis C virus polyprotein is mediated by host cell signalases and at least two virally encoded proteinases. Of these, the serine-type proteinase encompassing the amino-terminal one-third of NS3 is responsible for cleavage at the four sites carboxy terminal of NS3. The activity of this proteinase is modulated by NS4A, a 54-amino-acid polyprotein cleavage product essential for processing at the NS3/4A, NS4A/4B, and NS4B/5A sites and enhancing cleavage efficiency between NS5A and NS5B. Using the vaccinia virus-T7 hybrid system to express hepatitis C virus polypeptides in BHK-21 cells, we studied the role of NS4A in proteinase activation. We found that the NS3 proteinase a…

research product

Replication of the hepatitis C virus

Infection with the hepatitis C virus (HCV) is a major cause of chronic liver disease. HCV is an enveloped plus-strand RNA virus closely related to flavi- and pestiviruses. The first cloning of the HCV genome, about 10 years ago, initiated research efforts leading to the elucidation of the genomic organization and the definition of the functions of most viral proteins. Despite this progress the lack of convenient animal models and appropriate in vitro propagation systems have hampered a full understanding of the way the virus multiplies. This review summarizes our current knowledge about HCV replication and describes attempts pursued in the last few years to establish efficient and reliable …

research product

Biochemical properties of hepatitis C virus NS5B RNA-dependent RNA polymerase and identification of amino acid sequence motifs essential for enzymatic activity

The NS5B protein of the hepatitis C virus (HCV) is an RNA-dependent RNA polymerase (RdRp) (S.-E. Behrens, L. Tomei, and R. De Francesco, EMBO J. 15:12-22, 1996) that is assumed to be required for replication of the viral genome. To further study the biochemical and structural properties of this enzyme, an NS5B-hexahistidine fusion protein was expressed with recombinant baculoviruses in insect cells and purified to near homogeneity. The enzyme was found to have a primer-dependent RdRp activity that was able to copy a complete in vitro-transcribed HCV genome in the absence of additional viral or cellular factors. Filter binding assays and competition experiments showed that the purified enzym…

research product

Viral and cellular determinants of hepatitis C virus RNA replication in cell culture.

Studies on the replication of hepatitis C virus (HCV) have been facilitated by the development of selectable subgenomic replicons replicating in the human hepatoma cell line Huh-7 at a surprisingly high level. Analysis of the replicon population in selected cells revealed the occurrence of cell culture-adaptive mutations that enhance RNA replication substantially. To gain a better understanding of HCV cell culture adaptation, we characterized conserved mutations identified by sequence analysis of 26 independent replicon cell clones for their effect on RNA replication. Mutations enhancing replication were found in nearly every nonstructural (NS) protein, and they could be subdivided into at …

research product

Novel cell culture systems for the hepatitis C virus.

Infections with the hepatitis C virus (HCV) are a major cause of acute and chronic liver disease. The high prevalence of the virus, the insidious course of the disease and the poor prognosis for long-term persistent infection make this pathogen a serious medical and socioeconomical problem. The identification of the viral genome approximately 10 years ago rapidly led to the delineation of the genomic organization and the structural and biochemical characterization of several virus proteins. However, studies of the viral life cycle as well as the development of antiviral drugs have been difficult because of the lack of a robust and reliable cell culture system. Numerous attempts have been un…

research product