0000000000002210
AUTHOR
H. Schnatz
Ultrahigh-Resolution Microwave Spectroscopy on TrappedYb+171Ions
A Penning Trap for Studying Cluster Ions
We propose to use a Penning trap for spectroscopy of stored cluster ions. A similar device has been built for the purpose of mass measurements of short-lived nuclei produced at the on-line isotope separator ISOLDE/CERN. A resolving power of 500,000 in a mass measurement of39K and an accuracy of 2 × 10−7 for the85Rb/39K mass ratio were obtained. An efficiency for in-flight capture as high as 70% was achieved. The method provides very high sensitivity since typically only 10 to 100 ions are stored in the trap. We intend to perform laser spectroscopy on trapped Na clusters as a first application of the trap technique.
Precision measurement of two iodine lines at 585 nm and 549 nm
The transition frequencies of thei-component of the R(99)15-1 and thew-component of the R(85)26-0 transition in the B-X system of molecular127I2 have been determined with an overall relative standard uncertainty of 1.3 · 10−10. For this purpose a commercial linear dye laser has been modified and stabilized to the corresponding iodine line. This dye laser serves as a transportable frequency standard which is compared with the wavelength standards of the PTB. The evaluation of an experiment for testing special relativity at the test storage ring (TSR) in Heidelberg is based on the precision of the reported interferometric wavelength comparison.
First absolute mass measurements of short-lived isotopes
Absolute mass measurements of short-lived isotopes have been performed at the on-line mass separator ISOLDE at CERN by determining the cyclotron frequencies of ions confined in a Penning trap. The cyclotron frequencies for77,78,85,86,88Rb and88Sr ions could be determined with a resolving power of 3×105 and an accuracy of better than 10−6, which corresponds to 100 keV for massA=100. The shortest-lived isotope under investigation was77Rb with a half-life of 3.7 min. The resonances obtained for the isobars88Rb and88Sr were clearly resolved.
A penning trap for studying cluster ions
We propose to use a Penning trap for spectroscopy of stored cluster ions. A similar device has been built for the purpose of mass measurements of short-lived nuclei produced at the on-line isotope separator ISOLDE/CERN. A resolving power of 500,000 in a mass measurement of39K and an accuracy of 2 × 10−7 for the85Rb/39K mass ratio were obtained. An efficiency for in-flight capture as high as 70% was achieved. The method provides very high sensitivity since typically only 10 to 100 ions are stored in the trap. We intend to perform laser spectroscopy on trapped Na clusters as a first application of the trap technique.
Precise determination of the171Yb+ ground state Hyperfine separation
We performed a microwave-optical double resonance experiment on the ground state of171Yb+ ions. About 105 particles were confined in a r.f. quadrupole trap for periods of several hours in the presence of He buffer gas. Hyperfine pumping by a pulsed dye laser was followed by microwave transitions, which we observed via changes in the ionic fluorescence intensity. The ground state hyperfine splitting has been determined togD W=12642812124.2±1.4 Hz. The ultimate line width obtained in this experiment was 33 mHz, corresponding to a lineQ of 3.8·1011. The final error ofgD W is mainly determined by the accuracy of the available frequency reference.