0000000000002882

AUTHOR

Samuli Ikonen

An Operator Splitting Method for Pricing American Options

Pricing American options using partial (integro-)differential equation based methods leads to linear complementarity problems (LCPs). The numerical solution of these problems resulting from the Black-Scholes model, Kou’s jump-diffusion model, and Heston’s stochastic volatility model are considered. The finite difference discretization is described. The solutions of the discrete LCPs are approximated using an operator splitting method which separates the linear problem and the early exercise constraint to two fractional steps. The numerical experiments demonstrate that the prices of options can be computed in a few milliseconds on a PC.

research product

Operator splitting methods for American option pricing

Abstract We propose operator splitting methods for solving the linear complementarity problems arising from the pricing of American options. The space discretization of the underlying Black-Scholes Scholes equation is done using a central finite-difference scheme. The time discretization as well as the operator splittings are based on the Crank-Nicolson method and the two-step backward differentiation formula. Numerical experiments show that the operator splitting methodology is much more efficient than the projected SOR, while the accuracy of both methods are similar.

research product

Efficient numerical methods for pricing American options under stochastic volatility

Five numerical methods for pricing American put options under Heston's stochastic volatility model are described and compared. The option prices are obtained as the solution of a two-dimensional parabolic partial differential inequality. A finite difference discretization on nonuniform grids leading to linear complementarity problems with M-matrices is proposed. The projected SOR, a projected multigrid method, an operator splitting method, a penalty method, and a componentwise splitting method are considered. The last one is a direct method while all other methods are iterative. The resulting systems of linear equations in the operator splitting method and in the penalty method are solved u…

research product