0000000000003178

AUTHOR

Beatrice Wasser

Pro-inflammatory T helper 17 directly harms oligodendrocytes in neuroinflammation.

Significance Multiple sclerosis (MS) is a neuroinflammatory, demyelinating disease that represents one of the most frequent causes of irreversible disability in young adults. Treatment options to halt disability are limited. We discovered that T helper (Th)17 cells in contact with oligodendrocytes produce higher levels of glutamate and induce significantly greater oligodendrocyte damage than their Th2 counterpart. Blockade of CD29, which is linked to glutamate release pathways and expressed in high levels on Th17 cells, preserved human oligodendrocyte processes from Th17-mediated injury. Our data thus provide evidence for the direct and deleterious attack of Th17 cells on the myelin compart…

research product

The Role of ERK Signaling in Experimental Autoimmune Encephalomyelitis

Extracellular signal-regulated kinase (ERK) signaling plays a crucial role in regulating immune cell function and has been implicated in autoimmune disorders. To date, all commercially available inhibitors of ERK target upstream components, such as mitogen-activated protein (MAP) kinase/ERK kinase (MEKs), but not ERK itself. Here, we directly inhibit nuclear ERK translocation by a novel pharmacological approach (Glu-Pro-Glu (EPE) peptide), leading to an increase in cytosolic ERK phosphorylation during T helper (Th)17 cell differentiation. This was accompanied by diminished secretion of granulocyte-macrophage colony-stimulating factor (GM-CSF), a cytokine influencing the encephalitogenicity …

research product

Protein kinase CK2 governs the molecular decision between encephalitogenic T H 17 cell and T reg cell development

T helper 17 (TH17) cells represent a discrete TH cell subset instrumental in the immune response to extracellular bacteria and fungi. However, TH17 cells are considered to be detrimentally involved in autoimmune diseases like multiple sclerosis (MS). In contrast to TH17 cells, regulatory T (Treg) cells were shown to be pivotal in the maintenance of peripheral tolerance. Thus, the balance between Treg cells and TH17 cells determines the severity of a TH17 cell-driven disease and therefore is a promising target for treating autoimmune diseases. However, the molecular mechanisms controlling this balance are still unclear. Here, we report that pharmacological inhibition as well as genetic ablat…

research product

β1-Integrin– and K(V)1.3 channel–dependent signaling stimulates glutamate release from Th17 cells

Although the impact of Th17 cells on autoimmunity is undisputable, their pathogenic effector mechanism is still enigmatic. We discovered soluble N-ethylmaleimide–sensitive factor attachment receptor (SNARE) complex proteins in Th17 cells that enable a vesicular glutamate release pathway that induces local intracytoplasmic calcium release and subsequent damage in neurons. This pathway is glutamine dependent and triggered by binding of β1-integrin to vascular cell adhesion molecule 1 (VCAM-1) on neurons in the inflammatory context. Glutamate secretion could be blocked by inhibiting either glutaminase or K(V)1.3 channels, which are known to be linked to integrin expression and highly expressed…

research product

CNS-localized myeloid cells capture living invading T cells during neuroinflammation

Using an in vivo real-time approach, the authors show that local myeloid cells remove early CNS-invading T cells via an engulfment pathway that is dependent on N-acetyl-D-glucosamine (GlcNAc) and lectin. These results reveal a novel capacity of myeloid cells to counteract neuroinflammation.

research product