0000000000003266
AUTHOR
S. Baeßler
Systematic and statistical uncertainties of the hilbert-transform based high-precision FID frequency extraction method.
Abstract Pulsed nuclear magnetic resonance (NMR) is widely used in high-precision magnetic field measurements. The absolute value of the magnetic field is determined from the precession frequency of nuclear magnetic moments. The Hilbert transform is one of the methods that have been used to extract the phase function from the observed free induction decay (FID) signal and then its frequency. In this paper, a detailed implementation of a Hilbert-transform based FID frequency extraction method is described, and it is briefly compared with other commonly used frequency extraction methods. How artifacts and noise level in the FID signal affect the extracted phase function are derived analytical…
The magnetic shielding for the neutron decay spectrometer aSPECT
Abstract Many experiments in nuclear and neutron physics are confronted with the problem that they use a superconducting magnetic spectrometer which potentially affects other experiments by their stray magnetic field. The retardation spectrometer a SPECT consists, inter alia, of a superconducting magnet system that produces a strong longitudinal magnetic field of up to 6.2 T. In order not to disturb other experiments in the vicinity of a SPECT, we had to develop a magnetic field return yoke for the magnet system. While the return yoke must reduce the stray magnetic field, the internal magnetic field and its homogeneity should not be affected. As in many cases, the magnetic shielding for a S…
A measurement of the antineutrino asymmetry B in free neutron decay
Abstract We have measured the antineutrino asymmetry B in neutron beta decay, i.e., the correlation of the neutron spin and the antineutrino momentum, with a new method. Our result is B = 0.967 ± 0.006 stat ± 0.010 syst = 0.967 ± 0.012 . Statistical and systematic uncertainty can be considerably reduced in future experiments.
The Proton Spectrum in Neutron Beta Decay: Latest Results with the aSPECT Spectrometer
Abstract The purpose of the neutron decay spectrometer aSPECT is to determine the antineutrino electron angular correlation coefficient a with high precision. Latest measurements with aSPECT were performed during April/May 2008 at the Institut Laue-Langevin in Grenoble, France. In this paper we give a report on the experiment and the status of the ongoing data analysis.
Quantum motion of a neutron in a wave-guide in the gravitational field
We study theoretically the quantum motion of a neutron in a horizontal waveguide in the gravitational field of the Earth. The waveguide in question is equipped with a mirror below and a rough surface absorber above. We show that such a system acts as a quantum filter, i.e. it effectively absorbs quantum states with sufficiently high transversal energy but transmits low-energy states. The states transmitted are determined mainly by the potential well formed by the gravitational field of the Earth and the mirror. The formalism developed for quantum motion in an absorbing waveguide is applied to the description of the recent experiment on the observation of the quantum states of neutrons in th…
Measuring the proton spectrum in neutron decay - latest results with aSPECT
The retardation spectrometer aSPECT was built to measure the shape of the proton spectrum in free neutron decay with high precision. This allows us to determine the antineutrino electron angular correlation coefficient a. We aim for a precision more than one order of magnitude better than the present best value, which is Delta_a /a = 5%. In a recent beam time performed at the Institut Laue-Langevin during April / May 2008 we reached a statistical accuracy of about 2% per 24 hours measurement time. Several systematic effects were investigated experimentally. We expect the total relative uncertainty to be well below 5%.
Constraint on the coupling of axionlike particles to matter via ultracold neutron gravitational experiment
We present a new constraint for the axion monopole-dipole coupling in the range of 1 micrometer to a few millimeters, previously unavailable for experimental study. The constraint was obtained using our recent results on the observation of neutron quantum states in the Earth's gravitational field. We exploit the ultimate sensitivity of ultra-cold neutrons (UCN) in the lowest gravitational states above a material surface to any additional interaction between the UCN and the matter, if the characteristic interaction range is within the mentioned domain. In particular, we find that the upper limit for the axion monopole-dipole coupling constant is (g_p g_s)/(\hbar c)<2 x 10^{-15} for the ax…
Measurement of the anomalous precession frequency of the muon in the Fermilab Muon g−2 Experiment
The Muon g-2 Experiment at Fermi National Accelerator Laboratory (FNAL) has measured the muon anomalous precession frequency $\omega_a$ to an uncertainty of 434 parts per billion (ppb), statistical, and 56 ppb, systematic, with data collected in four storage ring configurations during its first physics run in 2018. When combined with a precision measurement of the magnetic field of the experiment's muon storage ring, the precession frequency measurement determines a muon magnetic anomaly of $a_{\mu}({\rm FNAL}) = 116\,592\,040(54) \times 10^{-11}$ (0.46 ppm). This article describes the multiple techniques employed in the reconstruction, analysis and fitting of the data to measure the preces…
He-3 spin filter for neutrons
The strongly spin-dependent absorption of neutrons in nuclear spin-polarized (3)He opens up the possibility of polarizing neutrons from reactors and spallation sources over the full kinematical range of cold, thermal and hot neutrons. This paper gives a report on the neutron spin filter (NSF) development program at Mainz. The polarization technique is based on direct optical pumping of metastable (3)He atoms combined with a polarization preserving mechanical compression of the gas up to a pressure of several bar, necessary to run a NSF. The concept of a remote type of operation using detachable NSF cells is presented which requires long nuclear spin relaxation times of order 100 hours. A sh…
The beta-, neutrino- and proton-asymmetry in neutron beta-decay
This article describes measurements of angular-correlation coefficients in the decay of free neutrons with the superconducting spectrometer PERKEO II. A method for measuring the β-asymmetry coefficient A is presented, as well as a new method for determining the neutrino-asymmetry coefficient B, which allows a value for the proton-asymmetry coefficient C to be obtained for the first time. An ongoing experiment is trying to improve the accuracy of these quantities.
Improved determination of the β−ν¯e angular correlation coefficient a in free neutron decay with the aSPECT spectrometer
We report on a precise measurement of the electron-antineutrino angular correlation ($a$ coefficient) in free neutron beta-decay from the $a$SPECT experiment. The $a$ coefficient is inferred from the recoil energy spectrum of the protons which are detected in 4$\pi$ by the $a$SPECT spectrometer using magnetic adiabatic collimation with an electrostatic filter. Data are presented from a 100 days run at the Institut Laue Langevin in 2013. The sources of systematic errors are considered and included in the final result. We obtain $a = -0.10430(84)$ which is the most precise measurement of the neutron $a$ coefficient to date. From this, the ratio of axial-vector to vector coupling constants is …
Measurement of quantum states of neutrons in the Earth's gravitational field
The lowest stationary quantum state of neutrons in the Earth's gravitational field is identified in the measurement of neutron transmission between a horizontal mirror on the bottom and an absorber/scatterer on top. Such an assembly is not transparent for neutrons if the absorber height is smaller than the ``height'' of the lowest quantum state.