0000000000003419

AUTHOR

Malgorzata Kasprzak

showing 13 related works from this author

Optically pumped Cs magnetometers enabling a high-sensitivity search for the neutron electric dipole moment

2020

An array of 16 laser-pumped scalar Cs magnetometers was part of the neutron electric dipole moment (nEDM) experiment taking data at the Paul Scherrer Institute in 2015 and 2016. It was deployed to measure the gradients of the experiment's magnetic field and to monitor their temporal evolution. The originality of the array lies in its compact design, in which a single near-infrared diode laser drives all magnetometers that are located in a high-vacuum chamber, with a selection of the sensors mounted on a high-voltage electrode. We describe details of the Cs sensors' construction and modes of operation, emphasizing the accuracy and sensitivity of the magnetic-field readout. We present two app…

experimental methodsAtomic Physics (physics.atom-ph)EXPERIMENTAL LIMITPhysics Atomic Molecular & Chemicalnucl-ex01 natural sciencesPhysics - Atomic PhysicsHigh Energy Physics - Experimentlaw.inventionHigh Energy Physics - Experiment (hep-ex)law[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)n: spinNuclear ExperimentPhysicsn: electric momentPhysicsincluding interactions with strong fields and short pulsesMagnetic fieldAtomic and molecular processes in external fieldsPhysical SciencesParticle Physics - ExperimentNeutron electric dipole momentMagnetometerOther Fields of PhysicsFOS: Physical sciencesmagnetic field: gradient[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]physics.atom-phOptics0103 physical sciencesNeutronNuclear Physics - ExperimentSensitivity (control systems)010306 general physicsDiodeScience & Technology010308 nuclear & particles physicsbusiness.industryhep-exScalar (physics)OpticssensitivityLaser[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]laserfield strengthtime dependencebusinessexperimental results
researchProduct

Data Blinding for the nEDM Experiment at PSI

2020

Psychological bias towards, or away from, prior measurements or theory predictions is an intrinsic threat to any data analysis. While various methods can be used to try to avoid such a bias, e.g. actively avoiding looking at the result, only data blinding is a traceable and trustworthy method that can circumvent the bias and convince a public audience that there is not even an accidental psychological bias. Data blinding is nowadays a standard practice in particle physics, but it is particularly difficult for experiments searching for the neutron electric dipole moment (nEDM), as several cross measurements, in particular of the magnetic field, create a self-consistent network into which it …

Nuclear and High Energy Physicsdata analysis methodPhysics - Instrumentation and DetectorsOffset (computer science)BlindingNeutron electric dipole momentOther Fields of PhysicsFOS: Physical sciencesSeparate analysis[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-ex01 natural sciencesHigh Energy Physics - Experimentphysics.data-anHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Physics - Experiment[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)Detectors and Experimental Techniques010306 general physicsNuclear Experimentphysics.ins-detPhysicsn: electric moment010308 nuclear & particles physicshep-exProbability and statisticsInstrumentation and Detectors (physics.ins-det)Data setSpecial Article - New Tools and TechniquesTrustworthinessPhysics - Data Analysis Statistics and ProbabilityAlgorithmData Analysis Statistics and Probability (physics.data-an)Particle Physics - Experiment[PHYS.PHYS.PHYS-DATA-AN]Physics [physics]/Physics [physics]/Data Analysis Statistics and Probability [physics.data-an]
researchProduct

Measurement of the permanent electric dipole moment of the neutron

2020

We present the result of an experiment to measure the electric dipole moment (EDM) of the neutron at the Paul Scherrer Institute using Ramsey’s method of separated oscillating magnetic fields with ultracold neutrons. Our measurement stands in the long history of EDM experiments probing physics violating time-reversal invariance. The salient features of this experiment were the use of a 199Hg comagnetometer and an array of optically pumped cesium vapor magnetometers to cancel and correct for magnetic-field changes. The statistical analysis was performed on blinded datasets by two separate groups, while the estimation of systematic effects profited from an unprecedented knowledge of the magne…

Physics - Instrumentation and DetectorsMagnetometerFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesMeasure (mathematics)S017EDMlaw.inventionHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)statistical analysislawcesium0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]time reversal: invarianceStatistical analysisNeutronNuclear Physics - ExperimentPhysics::Atomic Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)Detectors and Experimental Techniques010306 general physicsNuclear ExperimentNuclear ExperimentPhysicsn: electric momentInstrumentation and Detectors (physics.ins-det)Cesium vaporMagnetic fieldElectric dipole moment* Automatic Keywords *Ultracold neutronsElementary Particles and FieldshistoryAtomic physicstime reversal: violationmagnetic field: oscillationParticle Physics - Experiment
researchProduct

Constraining interactions mediated by axion-like particles with ultracold neutrons

2015

We report a new limit on a possible short range spin-dependent interaction from the precise measurement of the ratio of Larmor precession frequencies of stored ultracold neutrons and Hg199 atoms confined in the same volume. The measurement was performed in a ~1μT vertical magnetic holding field with the apparatus searching for a permanent electric dipole moment of the neutron at the Paul Scherrer Institute. A possible coupling between freely precessing polarized neutron spins and unpolarized nucleons of the wall material can be investigated by searching for a tiny change of the precession frequencies of neutron and mercury spins. Such a frequency change can be interpreted as a consequence o…

Nuclear and High Energy PhysicsNeutron magnetic momentNeutron electric dipole momentFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsPHYSICSHigh Energy Physics - Experiment (hep-ex)Complementary experimentsHigh Energy Physics - Phenomenology (hep-ph)AxionMOMENTS[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph]SEARCH0103 physical sciencesAxion-like particleultracold neutronsNeutron010306 general physicsCoupling constantLarmor precessionPhysics[PHYS]Physics [physics]010308 nuclear & particles physicsNeutron electric dipole moment[SPI.PLASMA]Engineering Sciences [physics]/Plasmaslcsh:QC1-999neutron electric dipole momentShort range spin-dependent interactionElectric dipole momentHigh Energy Physics - PhenomenologyCP violationaxion-like particleaxionUltracold neutronsshort range spin-dependent interactionFORCESUltracold neutronsCP violation; Short range spin-dependent interaction; Axion; Axion-like particle; Ultracold neutrons; Neutron electric dipole momentlcsh:Physics
researchProduct

Transmission of very slow neutrons through material foils and its influence on the design of ultracold neutron sources

2009

At the Paul Scherrer Institute (PSI), a very intense source of ultracold neutrons (UCN) is being built. The UCN converter of solid deuterium must be contained in a vessel. Produced UCN leave that vessel through its top lid. To decide on the design of the vessel and the top lid, we have measured the transmission of neutrons with velocities between 3 and 20 m/s through different material foils. Contrary to expectations, we found that transmission through aluminium and aluminium alloys is equal or even higher compared to zirconium and reactor-grade zirconium alloys, respectively.

PhysicsNuclear and High Energy PhysicsZirconiumZirconium alloychemistry.chemical_elementNuclear physicsTransmission (telecommunications)chemistryDeuteriumAluminiumUltracold neutronsNeutron sourceNeutronInstrumentationNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Magnetic field uniformity in neutron electric dipole moment experiments

2019

© 2019 American Physical Society. Magnetic-field uniformity is of the utmost importance in experiments to measure the electric dipole moment of the neutron. A general parametrization of the magnetic field in terms of harmonic polynomial modes is proposed, going beyond the linear-gradients approximation. We review the main undesirable effects of nonuniformities: depolarization of ultracold neutrons and Larmor frequency shifts of neutrons and mercury atoms. The theoretical predictions for these effects were verified by dedicated measurements with the single-chamber neutron electric-dipole-moment apparatus installed at the Paul Scherrer Institute. ispartof: Physical Review A vol:99 issue:4 sta…

Physics - Instrumentation and DetectorsNeutron electric dipole momentmercury: atommeasurement methodsFOS: Physical sciencesHarmonic polynomial01 natural sciences7. Clean energyHigh Energy Physics - Experiment010305 fluids & plasmasHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]NeutronPhysics::Atomic Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNuclear ExperimentFundamental conceptsQCPhysicsLarmor precessionMeasurement methodn: electric momentn: depolarizationmathematical methodsInstrumentation and Detectors (physics.ins-det)Magnetic fieldComputational physicsElectric dipole momentmagnetic field: parametrizationUltracold neutrons
researchProduct

Gravitational depolarization of ultracold neutrons : comparison with data

2015

We compare the expected effects of so-called gravitationally enhanced depolarization of ultracold neutrons to measurements carried out in a spin-precession chamber exposed to a variety of vertical magnetic-field gradients. In particular, we have investigated the dependence upon these field gradients of spin depolarization rates and also of shifts in the measured neutron Larmor precession frequency. We find excellent qualitative agreement, with gravitationally enhanced depolarization accounting for several previously unexplained features in the data.

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsField (physics)FOS: Physical sciences01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsGravitationHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]NeutronDetectors and Experimental Techniques010306 general physicsQCLarmor precessionPhysics010308 nuclear & particles physics1420DhDepolarizationInstrumentation and Detectors (physics.ins-det)Magnetic field gradient1130Ernumbers: 1340Em0755GeElectric dipole momentPhysics::Space PhysicsUltracold neutronsAtomic physics
researchProduct

A measurement of the neutron to 199Hg magnetic moment ratio

2014

The neutron gyromagnetic ratio has been measured relative to that of the 199Hg atom with an uncertainty of 0.8 ppm. We employed an apparatus where ultracold neutrons and mercury atoms are stored in the same volume and report the result γn/γHg=3.8424574(30).

inorganic chemicalsNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsNeutron magnetic momentAtomic Physics (physics.atom-ph)Astrophysics::High Energy Astrophysical PhenomenaGyromagnetic ratioFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesPhysics - Atomic PhysicsNuclear physicsMagnetic momentGyromagnetic ratio0103 physical sciencesAtomNeutron[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Physics::Atomic PhysicsNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentPhysicsCondensed Matter::Quantum Gases[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Magnetic moment010308 nuclear & particles physicsProton magnetic momenttechnology industry and agricultureQC0793Instrumentation and Detectors (physics.ins-det)Ultracold neutrons; Mercury atoms; Magnetic moment; Gyromagnetic ratioQC0770lcsh:QC1-999Mercury atomsElectric dipole momentbiological sciencesUltracold neutronslipids (amino acids peptides and proteins)Astrophysics::Earth and Planetary AstrophysicsAtomic physicsUltracold neutronslcsh:PhysicsPhysics Letters B
researchProduct

Dynamic stabilization of the magnetic field surrounding the neutron electric dipole moment spectrometer at the Paul Scherrer Institute

2014

The Surrounding Field Compensation (SFC) system described in this work is installed around the four-layer Mu-metal magnetic shield of the neutron electric dipole moment spectrometer located at the Paul Scherrer Institute. The SFC system reduces the DC component of the external magnetic field by a factor of about 20. Within a control volume of approximately 2.5m x 2.5m x 3m disturbances of the magnetic field are attenuated by factors of 5 to 50 at a bandwidth from $10^{-3}$ Hz up to 0.5 Hz, which corresponds to integration times longer than several hundreds of seconds and represent the important timescale for the nEDM measurement. These shielding factors apply to random environmental noise f…

Physics - Instrumentation and DetectorsNeutron electric dipole momentAtomic Physics (physics.atom-ph)FOS: Physical sciencesGeneral Physics and AstronomyShields[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesPhysics - Atomic Physics0103 physical sciencesNeutron[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentMoore–Penrose pseudoinverse010302 applied physicsPhysics[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Spectrometermagnetic field compensation systemInstrumentation and Detectors (physics.ins-det)Magnetic fieldComputational physicsElectromagnetic shieldingDC biasJournal of Applied Physics
researchProduct

Demonstration of sensitivity increase in mercury free-spin-precession magnetometers due to laser-based readout for neutron electric dipole moment sea…

2018

International audience; We report on a laser based $^{199}$Hg co-magnetometer deployed in an experiment searching for a permanent electric dipole moment of the neutron. We demonstrate a more than five times increased signal to-noise-ratio in a direct comparison measurement with its $^{204}$Hg discharge bulb-based predecessor. An improved data model for the extraction of important system parameters such as the degrees of absorption and polarization is derived. Laser- and lamp-based data-sets can be consistently described by the improved model which permits to compare measurements using the two different light sources and to explain the increase in magnetometer performance. The laser-based ma…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsNeutron electric dipole momentAtomic Physics (physics.atom-ph)Magnetometeratomic spectroscopyFOS: Physical sciencesAtomic spectroscopyNeutronelectric dipole moment[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural scienceslaw.inventionHigh Energy Physics - ExperimentPhysics - Atomic PhysicsHigh Energy Physics - Experiment (hep-ex)symbols.namesakeneutronlaw0103 physical sciencesNeutron[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det][ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)010306 general physicsZeeman effect; Atomic spectroscopy; Mercury; Electric dipole moment; Neutron[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]InstrumentationNuclear ExperimentPhysicsZeeman effectElectric dipole moment010308 nuclear & particles physicsInstrumentation and Detectors (physics.ins-det)Zeeman effectMercuryLaserComputational physicsMagnetic fieldElectric dipole momentAtomic spectroscopysymbols
researchProduct

Losses and depolarization of ultracold neutrons on neutron guide and storage materials

2017

At Institut Laue-Langevin (ILL) and Paul Scherrer Institute (PSI), we have measured the losses and depolarization probabilities of ultracold neutrons on various materials: (i) nickel-molybdenum alloys with weight percentages of 82/18, 85/15, 88/12, 91/9, and 94/6 and natural nickel Ni100, (ii) nickel-vanadium NiV93/7, (iii) copper, and (iv) deuterated polystyrene (dPS). For the different samples, storage-time constants up to $\ensuremath{\sim}460\phantom{\rule{0.16em}{0ex}}\mathrm{s}$ were obtained at room temperature. The corresponding loss parameters for ultracold neutrons, $\ensuremath{\eta}$, varied between $1.0\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$ and $2.2\ifmmode\t…

Physics010308 nuclear & particles physicschemistry.chemical_element[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesNuclear physicsParamagnetismNickelFerromagnetismDeuteriumchemistry0103 physical sciencesContent (measure theory)Ultracold neutronsNeutronSensitivity (control systems)Atomic physics010306 general physics
researchProduct

MC calculations for the nEDM experiment systematics

2010

International audience; The nEDM experiment hosted at the Paul Scherrer Institute is the flagship project at the new ultracold neutron facility. Estimations of systematic effects for the determination of the neutron electric dipole moment play an important role in this project. Experimental studies are supported by Monte Carlo simulations using the MCUCN code. Here we briefly present first results on the experimental benchmark of the model, and on the evaluation of the storage time dependence of the centre of mass of UCN in the nEDM precession chamber. Such time dependence calculations will serve as consistency tests for future measurements involving field gradient corrections of the Ramsey…

PhysicsMC simulationsNeutron electric dipole momentField (physics)010308 nuclear & particles physicsNeutron electric dipole momentMonte Carlo methodPhysics and Astronomy(all)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesNuclear physicsConsistency (statistics)Benchmark (surveying)0103 physical sciencesPrecessionUltracold neutronsNeutron010306 general physicsUltracold neutrons
researchProduct

Observation of Gravitationally Induced Vertical Striation of Polarized Ultracold Neutrons by Spin-Echo Spectroscopy.

2015

We describe a spin-echo method for ultracold neutrons (UCNs) confined in a precession chamber and exposed to a $|B_0|=1~\text{\mu T}$ magnetic field. We have demonstrated that the analysis of UCN spin-echo resonance signals in combination with knowledge of the ambient magnetic field provides an excellent method by which to reconstruct the energy spectrum of a confined ensemble of neutrons. The method takes advantage of the relative dephasing of spins arising from a gravitationally induced striation of stored UCN of different energies, and also permits an improved determination of the vertical magnetic-field gradient with an exceptional accuracy of $1.1~\text{pT/cm}$. This novel combination …

Physics - Instrumentation and DetectorsDephasingGeneral Physics and AstronomyFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesResonance (particle physics)Nuclear physics0103 physical sciencesNeutronNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentQCPhysicsNeutrons010308 nuclear & particles physicsInstrumentation and Detectors (physics.ins-det)Models TheoreticalNeutron spectroscopyMagnetic fieldCold TemperatureElectric dipole momentKineticsSpin echoUltracold neutronsAtomic physicsGravitationPhysical review letters
researchProduct