0000000000003430

AUTHOR

Philipp Schmidt-wellenburg

showing 17 related works from this author

Johnson-Nyquist Noise Effects in Neutron Electric-Dipole-Moment Experiments

2021

Magnetic Johnson-Nyquist noise (JNN) originating from metal electrodes, used to create a static electric field in neutron electric-dipole-moment (nEDM) experiments, may limit the sensitivity of measurements. We present here the first dedicated study on JNN applied to a large-scale long-measurement-time experiment with the implementation of a co-magnetometry. In this study, we derive surface- and volume-averaged root-mean-square normal noise amplitudes at a certain frequency bandwidth for a cylindrical geometry. In addition, we model the source of noise as a finite number of current dipoles and demonstrate a method to simulate temporal and three-dimensional spatial dependencies of JNN. The c…

noiseNeutron electric dipole momentMagnetometerAtomic Physics (physics.atom-ph)FOS: Physical sciencesNeutron Physics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesNoise (electronics)010305 fluids & plasmaslaw.inventionPhysics - Atomic PhysicslawElectric field0103 physical sciencesNeutronNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentPhysicshigh-precision experimentsprecision measurementJohnson–Nyquist noiseAtomic and molecular structure and dynamics[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Computational physicsDipoleNuclear Spin ResonanceAmplitudeElectromagnetic Field Calculations
researchProduct

First observation of trapped high-field seeking ultracold neutron spin states

2011

Ultracold neutrons were stored in a volume, using a magnetic dipole field shutter. Radial confinement was provided by material walls. Low-field seeking neutrons were axially confined above the magnetic field. High-field seeking neutrons are trapped inside the magnetic field. They can systematically shift the measured neutron lifetime to lower values in experiments with magnetic confinement. ISSN:0370-2693 ISSN:0031-9163 ISSN:1873-2445

PhysicsNeutron lifetimeNuclear and High Energy PhysicsSpin statesCondensed matter physicsUltracold neutron storage010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaNuclear TheoryMagnetic confinement fusionUltracold neutrons; Ultracold neutron storage; Neutron lifetime[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences3. Good healthMagnetic fieldShutter0103 physical sciencesUltracold neutronsNeutron010306 general physicsAxial symmetryNuclear ExperimentUltracold neutronsMagnetic dipolePhysics Letters B
researchProduct

Optically pumped Cs magnetometers enabling a high-sensitivity search for the neutron electric dipole moment

2020

An array of 16 laser-pumped scalar Cs magnetometers was part of the neutron electric dipole moment (nEDM) experiment taking data at the Paul Scherrer Institute in 2015 and 2016. It was deployed to measure the gradients of the experiment's magnetic field and to monitor their temporal evolution. The originality of the array lies in its compact design, in which a single near-infrared diode laser drives all magnetometers that are located in a high-vacuum chamber, with a selection of the sensors mounted on a high-voltage electrode. We describe details of the Cs sensors' construction and modes of operation, emphasizing the accuracy and sensitivity of the magnetic-field readout. We present two app…

experimental methodsAtomic Physics (physics.atom-ph)EXPERIMENTAL LIMITPhysics Atomic Molecular & Chemicalnucl-ex01 natural sciencesPhysics - Atomic PhysicsHigh Energy Physics - Experimentlaw.inventionHigh Energy Physics - Experiment (hep-ex)law[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)n: spinNuclear ExperimentPhysicsn: electric momentPhysicsincluding interactions with strong fields and short pulsesMagnetic fieldAtomic and molecular processes in external fieldsPhysical SciencesParticle Physics - ExperimentNeutron electric dipole momentMagnetometerOther Fields of PhysicsFOS: Physical sciencesmagnetic field: gradient[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]physics.atom-phOptics0103 physical sciencesNeutronNuclear Physics - ExperimentSensitivity (control systems)010306 general physicsDiodeScience & Technology010308 nuclear & particles physicsbusiness.industryhep-exScalar (physics)OpticssensitivityLaser[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]laserfield strengthtime dependencebusinessexperimental results
researchProduct

Data Blinding for the nEDM Experiment at PSI

2020

Psychological bias towards, or away from, prior measurements or theory predictions is an intrinsic threat to any data analysis. While various methods can be used to try to avoid such a bias, e.g. actively avoiding looking at the result, only data blinding is a traceable and trustworthy method that can circumvent the bias and convince a public audience that there is not even an accidental psychological bias. Data blinding is nowadays a standard practice in particle physics, but it is particularly difficult for experiments searching for the neutron electric dipole moment (nEDM), as several cross measurements, in particular of the magnetic field, create a self-consistent network into which it …

Nuclear and High Energy Physicsdata analysis methodPhysics - Instrumentation and DetectorsOffset (computer science)BlindingNeutron electric dipole momentOther Fields of PhysicsFOS: Physical sciencesSeparate analysis[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-ex01 natural sciencesHigh Energy Physics - Experimentphysics.data-anHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Physics - Experiment[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)Detectors and Experimental Techniques010306 general physicsNuclear Experimentphysics.ins-detPhysicsn: electric moment010308 nuclear & particles physicshep-exProbability and statisticsInstrumentation and Detectors (physics.ins-det)Data setSpecial Article - New Tools and TechniquesTrustworthinessPhysics - Data Analysis Statistics and ProbabilityAlgorithmData Analysis Statistics and Probability (physics.data-an)Particle Physics - Experiment[PHYS.PHYS.PHYS-DATA-AN]Physics [physics]/Physics [physics]/Data Analysis Statistics and Probability [physics.data-an]
researchProduct

Copper coated carbon fiber reinforced plastics for high and ultra high vacuum applications

2014

We have used copper-coated carbon fiber reinforced plastic (CuCFRP) for the construction of high and ultra-high vacuum recipients. The vacuum performance is found to be comparable to typical stainless steel used for this purpose. In test recipients we have reached pressures of 2E-8 mbar and measured a desorption rate of 1E-11 mbar*liter/s/cm^2; no degradation over time (2 years) has been found. Suitability for baking has been found to depend on the CFRP production process, presumably on the temperature of the autoclave curing. Together with other unique properties of CuCFRP such as low weight and being nearly non-magnetic, this makes it an ideal material for many high-end vacuum application…

Materials sciencePhysics - Instrumentation and DetectorsUltra-high vacuumFOS: Physical scienceschemistry.chemical_elementInstrumentation and Detectors (physics.ins-det)Fibre-reinforced plasticCondensed Matter Physics7. Clean energyCopperSurfaces Coatings and FilmschemistryDesorptionCopper coatingVacuum chamberComposite materialInstrumentationCuring (chemistry)
researchProduct

nEDM experiment at PSI : data-taking strategy and sensitivity of the dataset

2018

We report on the strategy used to optimize the sensitivity of our search for a neutron electric dipole moment at the Paul Scherrer Institute. Measurements were made upon ultracold neutrons stored within a single chamber at the heart of our apparatus. A mercury cohabiting magnetometer together with an array of cesium magnetometers were used to monitor the magnetic field, which was controlled and shaped by a series of precision field coils. In addition to details of the setup itself, we describe the chosen path to realize an appropriate balance between achieving the highest statistical sensitivity alongside the necessary control on systematic effects. The resulting irreducible sensitivity is …

PhysicsPhysics - Instrumentation and DetectorsNeutron electric dipole moment010308 nuclear & particles physicsbusiness.industryMagnetometerPhysicsQC1-999Statistical sensitivityFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesMagnetic fieldlaw.inventionOpticslaw0103 physical sciencesUltracold neutrons[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)010306 general physicsbusinessNuclear ExperimentSingle chamber
researchProduct

Statistical sensitivity of the nEDM apparatus at PSI to n − n′ oscillations

2018

The neutron and its hypothetical mirror counterpart, a sterile state degenerate in mass, could spontaneously mix in a process much faster than the neutron β-decay. Two groups have performed a series of experiments in search of neutron – mirror-neutron (n − n′) oscillations. They reported no evidence, thereby setting stringent limits on the oscillation time τnn′. Later, these data sets have been further analyzed by Berezhiani et al.(2009–2017), and signals, compatible with n − n′ oscillations in the presence of mirror magnetic fields, have been reported. The Neutron Electric Dipole Moment Collaboration based at the Paul Scherrer Institute performed a new series of experiments to further test…

Neutron electric dipole momentQC1-999magnetic field[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesmirror particle0103 physical sciencesoverlapNeutronSensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicssterileoscillation: timePhysicsn: electric momentSeries (mathematics)010308 nuclear & particles physicsOscillationPhysicsDegenerate energy levelssensitivityMagnetic fieldComputational physicsNeutron sourcestatisticalperformance
researchProduct

Magnetic field uniformity in neutron electric dipole moment experiments

2019

© 2019 American Physical Society. Magnetic-field uniformity is of the utmost importance in experiments to measure the electric dipole moment of the neutron. A general parametrization of the magnetic field in terms of harmonic polynomial modes is proposed, going beyond the linear-gradients approximation. We review the main undesirable effects of nonuniformities: depolarization of ultracold neutrons and Larmor frequency shifts of neutrons and mercury atoms. The theoretical predictions for these effects were verified by dedicated measurements with the single-chamber neutron electric-dipole-moment apparatus installed at the Paul Scherrer Institute. ispartof: Physical Review A vol:99 issue:4 sta…

Physics - Instrumentation and DetectorsNeutron electric dipole momentmercury: atommeasurement methodsFOS: Physical sciencesHarmonic polynomial01 natural sciences7. Clean energyHigh Energy Physics - Experiment010305 fluids & plasmasHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]NeutronPhysics::Atomic Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNuclear ExperimentFundamental conceptsQCPhysicsLarmor precessionMeasurement methodn: electric momentn: depolarizationmathematical methodsInstrumentation and Detectors (physics.ins-det)Magnetic fieldComputational physicsElectric dipole momentmagnetic field: parametrizationUltracold neutrons
researchProduct

Ein Weg zur Lösung des kosmischen Antimaterie-Rätsels? : Suche nach dem elektrischen Dipolmoment des Neutrons

2021

530 Physics530 Physik
researchProduct

Gravitational depolarization of ultracold neutrons : comparison with data

2015

We compare the expected effects of so-called gravitationally enhanced depolarization of ultracold neutrons to measurements carried out in a spin-precession chamber exposed to a variety of vertical magnetic-field gradients. In particular, we have investigated the dependence upon these field gradients of spin depolarization rates and also of shifts in the measured neutron Larmor precession frequency. We find excellent qualitative agreement, with gravitationally enhanced depolarization accounting for several previously unexplained features in the data.

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsField (physics)FOS: Physical sciences01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsGravitationHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]NeutronDetectors and Experimental Techniques010306 general physicsQCLarmor precessionPhysics010308 nuclear & particles physics1420DhDepolarizationInstrumentation and Detectors (physics.ins-det)Magnetic field gradient1130Ernumbers: 1340Em0755GeElectric dipole momentPhysics::Space PhysicsUltracold neutronsAtomic physics
researchProduct

Demonstration of sensitivity increase in mercury free-spin-precession magnetometers due to laser-based readout for neutron electric dipole moment sea…

2018

International audience; We report on a laser based $^{199}$Hg co-magnetometer deployed in an experiment searching for a permanent electric dipole moment of the neutron. We demonstrate a more than five times increased signal to-noise-ratio in a direct comparison measurement with its $^{204}$Hg discharge bulb-based predecessor. An improved data model for the extraction of important system parameters such as the degrees of absorption and polarization is derived. Laser- and lamp-based data-sets can be consistently described by the improved model which permits to compare measurements using the two different light sources and to explain the increase in magnetometer performance. The laser-based ma…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsNeutron electric dipole momentAtomic Physics (physics.atom-ph)Magnetometeratomic spectroscopyFOS: Physical sciencesAtomic spectroscopyNeutronelectric dipole moment[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural scienceslaw.inventionHigh Energy Physics - ExperimentPhysics - Atomic PhysicsHigh Energy Physics - Experiment (hep-ex)symbols.namesakeneutronlaw0103 physical sciencesNeutron[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det][ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)010306 general physicsZeeman effect; Atomic spectroscopy; Mercury; Electric dipole moment; Neutron[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]InstrumentationNuclear ExperimentPhysicsZeeman effectElectric dipole moment010308 nuclear & particles physicsInstrumentation and Detectors (physics.ins-det)Zeeman effectMercuryLaserComputational physicsMagnetic fieldElectric dipole momentAtomic spectroscopysymbols
researchProduct

Oscillating ultra-cold neutron spectrometer

2019

The energy spectrum of ultra-cold neutrons (UCN) is very often a key point to determine the systematic effects in precision measurements utilizing UCN. The proposed novel method allows the in-situ measurements of the UCN velocity distribution and its time evolution. In addition, the proposed UCN spectrometer can be a handy diagnostic tool for monitoring the UCN spectrum in critical places in the transport system connecting an UCN source with experiments. In this paper, we present the preliminary results from measurements and simulations using the oscillating UCN spectrometer at the PSI UCN source.

PhysicsSpectrometerbusiness.industryPhysics::Instrumentation and DetectorsPhysicsQC1-999Time evolutionKey pointOpticsEnergy spectrumNeutronbusinessNuclear ExperimentTransport system
researchProduct

Losses and depolarization of ultracold neutrons on neutron guide and storage materials

2017

At Institut Laue-Langevin (ILL) and Paul Scherrer Institute (PSI), we have measured the losses and depolarization probabilities of ultracold neutrons on various materials: (i) nickel-molybdenum alloys with weight percentages of 82/18, 85/15, 88/12, 91/9, and 94/6 and natural nickel Ni100, (ii) nickel-vanadium NiV93/7, (iii) copper, and (iv) deuterated polystyrene (dPS). For the different samples, storage-time constants up to $\ensuremath{\sim}460\phantom{\rule{0.16em}{0ex}}\mathrm{s}$ were obtained at room temperature. The corresponding loss parameters for ultracold neutrons, $\ensuremath{\eta}$, varied between $1.0\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$ and $2.2\ifmmode\t…

Physics010308 nuclear & particles physicschemistry.chemical_element[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesNuclear physicsParamagnetismNickelFerromagnetismDeuteriumchemistry0103 physical sciencesContent (measure theory)Ultracold neutronsNeutronSensitivity (control systems)Atomic physics010306 general physics
researchProduct

MC calculations for the nEDM experiment systematics

2010

International audience; The nEDM experiment hosted at the Paul Scherrer Institute is the flagship project at the new ultracold neutron facility. Estimations of systematic effects for the determination of the neutron electric dipole moment play an important role in this project. Experimental studies are supported by Monte Carlo simulations using the MCUCN code. Here we briefly present first results on the experimental benchmark of the model, and on the evaluation of the storage time dependence of the centre of mass of UCN in the nEDM precession chamber. Such time dependence calculations will serve as consistency tests for future measurements involving field gradient corrections of the Ramsey…

PhysicsMC simulationsNeutron electric dipole momentField (physics)010308 nuclear & particles physicsNeutron electric dipole momentMonte Carlo methodPhysics and Astronomy(all)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesNuclear physicsConsistency (statistics)Benchmark (surveying)0103 physical sciencesPrecessionUltracold neutronsNeutron010306 general physicsUltracold neutrons
researchProduct

Testing isotropy of the universe using the Ramsey resonance technique on ultracold neutron spins

2010

Physics at the Planck scale could be revealed by looking for tiny violations of fundamental symmetries in low energy experiments. In 2008, a sensitive test of the isotropy of the Universe using has been performed with stored ultracold neutrons (UCN), this is the first clock-comparison experiment performed with free neutrons. During several days we monitored the Larmor frequency of neutron spins in a weak magnetic field using the Ramsey resonance technique. An non-zero cosmic axial field, violating rotational symmetry, would induce a daily variation of the precession frequency. Our null result constitutes one of the most stringent tests of Lorentz invariance to date.

Neutron electric dipole momentAtomic Physics (physics.atom-ph)FOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Lorentz covariance01 natural sciencesResonance (particle physics)Physics - Atomic PhysicsHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Quantum mechanics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]NeutronNuclear Experiment (nucl-ex)Electrical and Electronic Engineering010306 general physicsNuclear ExperimentLarmor precessionPhysics[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Spins010308 nuclear & particles physicsCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsNeutron spectroscopyUltracold neutrons
researchProduct

Observation of Gravitationally Induced Vertical Striation of Polarized Ultracold Neutrons by Spin-Echo Spectroscopy.

2015

We describe a spin-echo method for ultracold neutrons (UCNs) confined in a precession chamber and exposed to a $|B_0|=1~\text{\mu T}$ magnetic field. We have demonstrated that the analysis of UCN spin-echo resonance signals in combination with knowledge of the ambient magnetic field provides an excellent method by which to reconstruct the energy spectrum of a confined ensemble of neutrons. The method takes advantage of the relative dephasing of spins arising from a gravitationally induced striation of stored UCN of different energies, and also permits an improved determination of the vertical magnetic-field gradient with an exceptional accuracy of $1.1~\text{pT/cm}$. This novel combination …

Physics - Instrumentation and DetectorsDephasingGeneral Physics and AstronomyFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesResonance (particle physics)Nuclear physics0103 physical sciencesNeutronNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentQCPhysicsNeutrons010308 nuclear & particles physicsInstrumentation and Detectors (physics.ins-det)Models TheoreticalNeutron spectroscopyMagnetic fieldCold TemperatureElectric dipole momentKineticsSpin echoUltracold neutronsAtomic physicsGravitationPhysical review letters
researchProduct

A search for neutron to mirror-neutron oscillations using the nEDM apparatus at PSI

2021

It has been proposed that there could be a mirror copy of the standard model particles, restoring the parity symmetry in the weak interaction on the global level. Oscillations between a neutral standard model particle, such as the neutron, and its mirror counterpart could potentially answer various standing issues in physics today. Astrophysical studies and terrestrial experiments led by ultracold neutron storage measurements have investigated neutron to mirror-neutron oscillations and imposed constraints on the theoretical parameters. Recently, further analysis of these ultracold neutron storage experiments has yielded statistically significant anomalous signals that may be interpreted as …

Nuclear and High Energy PhysicsNeutron electric dipole momentmedia_common.quotation_subjectmagnetic fieldWeak interaction[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Astronomy & Astrophysics01 natural sciences7. Clean energyAsymmetryrotationPhysics Particles & FieldsELECTRIC-DIPOLE MOMENTweak interaction0103 physical sciencesDark matterDARK-MATTERNeutron010306 general physicsnumerical calculationsmirrorNuclear mattermedia_commonoscillation: timePhysicsn: electric momentProperties of neutrons Ultracold neutrons Nuclear matter Mirror matter Dark matter Particle symmetriesScience & TechnologyProperties of neutronsParticle symmetries010308 nuclear & particles physicsparity: symmetryPhysicsNuclear matter[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]lcsh:QC1-999Mirror matterMagnetic fieldMODELPhysics Nuclear[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Physical SciencesUltracold neutronsAtomic physicsUltracold neutronsMirror matterasymmetrylcsh:PhysicsPhysics Letters B
researchProduct