0000000000003474

AUTHOR

Manuel Miró

0000-0002-8413-3008

The embodiment of wastewater data for the estimation of illicit drug consumption in Spain

Data obtained from wastewater analysis can provide rapid and complementary insights in illicit drug consumption at community level. Within Europe, Spain is an important country of transit of both cocaine and cannabis. The quantity of seized drugs and prevalence of their use rank Spain at the top of Europe. Hence, the implementation of a wastewater monitoring program at national level would help to get better understanding of spatial differences and trends in use of illicit drugs. In this study, a national wastewater campaign was performed for the first time to get more insight on the consumption of illicit drugs within Spain. The 13 Spanish cities monitored cover approximately 6 million inh…

research product

3D printed fluidic platform with in-situ covalently immobilized polymer monolithic column for automatic solid-phase extraction

Abstract In this work, 3D stereolithographic printing is proposed for the first time for the fabrication of fluidic devices aimed at in-situ covalent immobilization of polymer monolithic columns. Integration in advanced flow injection systems capitalized upon programmable flow was realized for fully automatic solid-phase extraction (SPE) and clean-up procedures as a ‘front-end’ to on-line liquid chromatography. The as-fabricated 3D-printed extraction column devices were designed to tolerate the pressure drop of forward-flow fluidic systems when handling large sample volumes as demonstrated by the determination of anti-microbial agents, plastic additives and monomers as models of emerging co…

research product

Assessing population exposure to phthalate plasticizers in thirteen Spanish cities through the analysis of wastewater

Phthalates are widely used plasticizers that produce endocrine-disrupting disorders. Quantifying exposure is crucial to perform risk assessments and to develop proper health measures. Herein, a wastewater-based epidemiology approach has been applied to estimate human exposure to six of the mostly used phthalates within the Spanish population. Wastewater samples were collected over four weekdays from seventeen wastewater treatment plants serving thirteen cities and ca. 6 million people (12.8 % of the Spanish population). Phthalate metabolite loads in wastewater were transformed into metabolite concentrations in urine and into daily exposure levels to the parent phthalates. Considering all th…

research product

An automatic flow-through system for exploration of the human bioaccessibility of endocrine disrupting compounds from microplastics

This article reports on the first attempt towards investigating the leaching rates in the human gastrointestinal (GI) tract of plastic-borne contaminants that can be ingested accidentally using physiologically relevant body fluids. Oral bioaccessibility under fasted and fed states was determined in dynamic mode exploiting an automatic flow setup. The flow system is able to mimic the fast uptake of the released species from the polymeric matrix by absorption in the human digestive system by the in-line removal of the leached species. Complex GI extractants based on the Unified Bioaccessibility Method (UBM, fasted state) and Versantvoort test (fed-state) were brought through a microplastic-lo…

research product

The emerging role of 3D printing in the fabrication of detection systems

Abstract 3D printing is fast evolving as an additive manufacturing technique that has been adopted in (bio)analytical science because of the ample variety of materials and technologies currently available for highly affordable prototyping. This review focuses on the unique characteristics of 3D printing for manufacturing of optical and electrochemical detection systems, and sampling interfaces for analytical purposes using fused deposition modelling, vat polymerization (stereolithography and digital light processing) and photopolymer inkjet printing. The majority of works surveyed within the time span of mid-2018 to mid-2020 encompassed the fabrication of several components of the detection…

research product

Towards an automatic lab-on-valve-ion mobility spectrometric system for detection of cocaine abuse.

A lab-on-valve miniaturized system integrating on-line disposable micro-solid phase extraction has been interfaced with ion mobility spectrometry for the accurate and sensitive determination of cocaine and ecgonine methyl ester in oral fluids. The method is based on the automatic loading of 500μL of oral fluid along with the retention of target analytes and matrix clean-up by mixed-mode cationic/reversed-phase solid phase beads, followed by elution with 100μL of 2-propanol containing (3% v/v) ammonia, which are online injected into the IMS. The sorptive particles are automatically discarded after every individual assay inasmuch as the sorptive capacity of the sorbent material is proven to b…

research product

Human artificial membranes in (bio)analytical science: Potential for in vitro prediction of intestinal absorption-A review

Abstract Artificial membranes for investigation of the human absorption (oral, dermal or respiratory) of target organic compounds are aimed at mimicking the interactions occurring at and within the cell lipid membrane. Biomolecules such as proteins are also integral components of the lipid membranes and play a pivotal role towards understanding the complex mechanisms of human absorption. In this review, we will differentiate biomimetic platforms based on static (batchwise) and dynamic modes. In the former, a synthetic membrane placed between two phases (donor and acceptor) mimics a given biological system to study permeability. Parallel artificial membrane permeation assays are the most com…

research product

LA IMPRESIÓN 3D PARA EL ANÁLISIS DE CONTAMINANTES EMERGENTES

Resumen de la publicación de una participación en formato µVídeo en en el congreso Divulga NextGen (1ª edición) que se celebrará online, de manera gratuita y en las redes sociales los días 26, 27 y 28 de mayo de 2021.

research product

Fully Automated Electric-Field-Driven Liquid Phase Microextraction System with Renewable Organic Membrane As a Front End to High Performance Liquid Chromatography

This article reports for the first time a programmable-flow-based mesofluidic platform that accommodates electric-field-driven liquid phase microextraction (μ-EME) in a fully automated mode. The miniaturized system is composed of a computer-controlled microsyringe pump and a multiposition rotary valve for handling aqueous and organic solutions at a low microliter volume and acts as a front-end to online liquid chromatographic separation. The organic membrane is automatically renewed and disposed of in every analytical cycle, thus minimizing analyte carry-over effects while avoiding analyst intervention. The proof-of-concept applicability of the automated mesofluidic device is demonstrated b…

research product