0000000000003837

AUTHOR

Roger Sanchis-gual

0000-0002-9096-7930

showing 20 related works from this author

Plasmon-assisted spin transition in gold nanostar@spin crossover heterostructures

2021

Aquí presentamos el diseño de nanopartículas core@shell formadas por un núcleo de nanoestrella de Au metálico y una capa cruzada de espín basada en el polímero de coordinación [Fe(Htrz)2(trz)](BF4). Este procedimiento es general y se ha extendido a otras morfologías metálicas (nanovarillas, nanotriángulos). Gracias al efecto fototérmico derivado de las propiedades plasmónicas de la nanoestrella de Au, el 60 % de los centros de hierro experimentan una transición de espín térmico dentro de la histéresis térmica provocada por una irradiación de baja intensidad con un láser de 808 nm. En comparación con otras morfologías de Au, la gran ventaja de la forma de nanoestrella surge de los puntos cal…

NanostructureMaterials sciencebusiness.industryUNESCO::QUÍMICAPhotothermal effectSpin transitionNanoparticleHeterojunction02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences7. Clean energy0104 chemical sciencesSpin crossoverMaterials ChemistryOptoelectronicsNanorod0210 nano-technologybusinessPlasmon
researchProduct

Crystallographic and geometrical dependence of water oxidation activity in Co-based layered hydroxides

2022

Cobalt-based layered hydroxides (LHs) stand out as one of the best families of electroactive materials for the alkaline oxygen evolution reaction (OER). However, fundamental aspects such as the influence of the crystalline structure and its connection with the geometry of the catalytic sites remains poorly understood. Thus, to address this we have conducted a thorough experimental and in silico study on the most essential Co-LHs (i.e.: ɑ-LH, β-LH and LDH) which allows us to understand the role of the layered structure and coordination environment of Co atoms on the OER performance. The ɑ-LH, containing both octahedral and tetrahedral sites, behaves as the best OER catalyst in comparison to …

Química
researchProduct

Prussian blue@MoS2 layer composites as highly efficient cathodes for sodium- and potassium-ion batteries

2018

Prussian blue (PB) represents a simple, economical, and eco‐friendly system as cathode material for sodium‐ion batteries (SIBs). However, structural problems usually worsen its experimental performance thus motivating the search for alternative synthetic strategies and the formation of composites that compensate these deficiencies. Herein, a straightforward approach for the preparation of PB/MoS2‐based nanocomposites is presented. MoS2 provides a 2D active support for the homogeneous nucleation of porous PB nanocrystals, which feature superior surface areas than those obtained by other methodologies, giving rise to a compact PB shell covering the full flake. The nanocomposite exhibits an ex…

Materials scienceMaterials compostosPrussian blue2D composites02 engineering and technologyPotassium-ion batteries010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences0104 chemical sciencesElectronic Optical and Magnetic MaterialsMarie curieBiomaterialsElectrochemistrymedia_common.cataloged_instanceQuímica FísicaEuropean union0210 nano-technologyMoS2 layersSodium-ion batteriesHumanitiesmedia_common
researchProduct

Boosting the supercapacitive behavior of CoAl-layered double hydroxides via tuning the metal composition and interlayer space

2020

Layered double hydroxides (LDHs) are promising supercapacitor materials due to their wide chemical versatility, earth abundant metals and high specific capacitances. Many parameters influencing the supercapacitive performance have been studied such as the chemical composition, the synthetic approaches, and the interlayer anion. However, no systematic studies about the effect of the basal space have been carried out. Here, two-dimensional (2D) CoAl-LDHs were synthesized through anion exchange reactions using surfactant molecules in order to increase the interlayer space (ranging from 7.5 to 32.0 Å). These compounds exhibit similar size and dimensions but different basal space to explore excl…

Materials scienceBoosting (machine learning)Energy Engineering and Power Technology02 engineering and technologyengineering.material010402 general chemistrySpace (mathematics)01 natural sciencesEnergy storageMetalElectrochemistryCoalElectrical and Electronic EngineeringMaterialsSupercapacitorIon exchangebusiness.industryLayered double hydroxides021001 nanoscience & nanotechnology0104 chemical sciencesChemical engineeringvisual_artengineeringvisual_art.visual_art_mediumEnergia0210 nano-technologybusiness
researchProduct

Influence of crystallographic structure and metal vacancies on the oxygen evolution reaction performance of Ni-based layered hydroxides

2023

Nickel-based layered hydroxides (LHs) are a family of efficient electrocatalysts for the alkaline oxygen evolution reaction (OER). Nevertheless, fundamental aspects such as the influence of the crystalline structure and the role of lattice distortion of the catalytic sites remain poorly understood and typically muddled. Herein, we carried out a comprehensive investigation on ɑ-LH, β-LH and LDH phases, analysing the role exerted by Ni-vacancies by means of structural, spectroscopical, in-silico and electrochemical studies. Indeed, density functional theory (DFT) calculations, in agreement with X-ray absorption spectroscopy (XAS), confirm that the presence of Ni-vacancies produces acute disto…

Química
researchProduct

The design of magneto-plasmonic nanostructures formed by magnetic Prussian Blue-type nanocrystals decorated with Au nanoparticles.

2021

Abstract: We have developed a general protocol for the preparation of hybrid nanostructures formed by nanoparticles (NPs) of molecule-based magnets based on Prussian Blue Analogues (PBAs) decorated with plasmonic Au NPs of different shapes. By adjusting the pH, Au NPs can be attached preferentially along the edges of the PBA or randomly on the surface. The protocol allows tuning the plasmonic properties of the hybrids in the whole visible spectrum.

Materials scienceNanostructureNanoparticleNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesCatalysischemistry.chemical_compoundMaterials ChemistryMoleculeMaterialsPlasmonPrussian blueNanoestructuresMetals and AlloysGeneral Chemistry021001 nanoscience & nanotechnology3. Good health0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsChemistryNanocrystalchemistryCeramics and Composites0210 nano-technologyScience technology and societyVisible spectrumChemical communications (Cambridge, England)
researchProduct

Continuous‐Flow Synthesis of High‐Quality Few‐Layer Antimonene Hexagons

2021

2D materials show outstanding properties that can bring many applications in different technological fields. However, their uses are still limited by production methods. In this context, antimonene is recently suggested as a new 2D material to fabricate different (opto)electronic devices, among other potential applications. This work focuses on optimizing the synthetic parameters to produce high-quality antimonene hexagons and their implementation in a large-scale manufacturing procedure. By means of a continuous-flow synthesis, few-layer antimonene hexagons with ultra-large lateral dimensions (up to several microns) and a few nanometers thick are isolated. The suitable chemical post-treatm…

Materials sciencebusiness.industryContinuous flow02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences0104 chemical sciencesElectronic Optical and Magnetic MaterialsBiomaterialsQuality (physics)ElectrochemistryOptoelectronics0210 nano-technologybusinessLayer (electronics)Colloidal synthesisAdvanced Functional Materials
researchProduct

New Molecular-Based Materials for Enabling Electro-Optical Bistability in the Silicon Photonics Platform

2019

Electro-optical bistability is a functionality which can be crucial for a wide range of applications as it can enable non-volatile and ultra-low power switching performance. We investigate the integration of a molecular-based material presenting a Spin Crossover (SCO) effect in the silicon platform for enabling optical bistability. The SCO phenomenon involves a switching process between two molecular spin states. This spin transition comes along with a change in the optical refractive index that can be switched by different external stimuli such as a variation of temperature or light irradiation and which has a hysteretic behaviour. The SCO material can be synthetized as nanoparticles so th…

Silicon photonicsMaterials scienceBistabilitySiliconbusiness.industrySpin transitionchemistry.chemical_element02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesOptical switch0104 chemical sciencesOptical bistabilitychemistrySpin crossoverOptoelectronicsPhotonics0210 nano-technologybusinessComputer Science::Databases2019 21st International Conference on Transparent Optical Networks (ICTON)
researchProduct

Liquid phase exfoliation of carbonate-intercalated layered double hydroxides.

2019

Direct exfoliation of a carbonate layered double hydroxide (LDH) has been achieved by using a novel horn-probe sonic tip, avoiding the development of time-consuming anion-exchange reactions. The most suitable solvents were chosen based on the Hildebrand solubility parameters and the thickness of the exfoliated nanosheets confirmed unambiguously the successful delamination.

Materials scienceLiquid phaseengineering.material010402 general chemistry01 natural sciencesCatalysischemistry.chemical_compoundMaterials Chemistry010405 organic chemistryDelaminationMetals and AlloysLayered double hydroxidesGeneral ChemistryQuímicaExfoliation joint0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsHildebrand solubility parameterchemistryChemical engineeringCeramics and CompositesengineeringHydroxideCarbonateChemical communications (Cambridge, England)
researchProduct

Reinforced Room-Temperature Spin Filtering in Chiral Paramagnetic Metallopeptides

2020

Chirality-induced spin selectivity (CISS), whereby helical molecules polarize the spin of electrical current, is an intriguing effect with potential applications in nanospintronics. In this nascent field, the study of the CISS effect using paramagnetic chiral molecules, which could introduce another degree of freedom in controlling the spin transport, remains so far unexplored. To address this challenge, herein we propose the use of self-assembled monolayers (SAMs) of helical lanthanide-binding peptides. To elucidate the effect of the paramagnetic nuclei, monolayers of the peptide coordinating paramagnetic or diamagnetic ions are prepared. By means of spin-dependent electrochemistry, the CI…

Surface PropertiesFOS: Physical sciencesApplied Physics (physics.app-ph)02 engineering and technology010402 general chemistryLanthanoid Series Elements01 natural sciencesBiochemistryCatalysisElectron TransportParamagnetismColloid and Surface ChemistryElectrical currentMesoscale and Nanoscale Physics (cond-mat.mes-hall)ElectrochemistryOrganometallic CompoundsMoleculeAmino Acid SequenceSpin-½Spin filteringCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsChemistryElectron Spin Resonance SpectroscopyTemperatureStereoisomerismPhysics - Applied PhysicsGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesModels ChemicalCondensed Matter::Strongly Correlated ElectronsGoldPeptides0210 nano-technologySelectivityJournal of the American Chemical Society
researchProduct

Influence of the Interlayer Space on the Water Oxidation Performance in a Family of Surfactant-Intercalated NiFe-Layered Double Hydroxides

2019

Layered double hydroxides (LDHs) are low dimensional materials that act as benchmark catalysts for the oxygen evolution reaction (OER). Many LDH properties affecting the OER have been studied to reach the optimal efficiency but no systematic studies concerning the influence of the interlayer space have been developed. In this context, these materials allow a large tunability in their chemical composition enabling the substitution of the interlayer anion and therefore modifying exclusively the basal space. Here, we synthesize by anion exchange reactions a surfactantintercalated family of NiFe-LDHs with increasing basal spacing ranging from 8.0 to 31.6 Å (one of the largest reported so far fo…

Materials scienceGeneral Chemical EngineeringOxygen evolutionLayered double hydroxides02 engineering and technologyGeneral Chemistryengineering.material010402 general chemistry021001 nanoscience & nanotechnologySpace (mathematics)01 natural sciences0104 chemical sciencesCatalysisPulmonary surfactantChemical engineeringMaterials Chemistryengineering0210 nano-technologyMaterials
researchProduct

Hybrid nanostructures based on gold nanoparticles and functional coordination polymers: Chemistry, physics and applications in biomedicine, catalysis…

2023

During the last decade, the scientific community has become interested in hybrid nanomaterials, especially the ones that combine gold nanoparticles with a second functional component. In this context, coordination polymers are materials that possess potential advantages over conventional inorganic nanomaterials and organic compounds such as chemical versatility, easy processability, high specific area, low toxicity, biodegradability and electronic and magnetic functionalities to name a few. In this manner, the wise integration of Au nanoparticles with coordination polymers in different types of nanostructures has allowed extending the scope of properties and applications of these systems, a…

Inorganic ChemistryMaterials ChemistryOrCompostos de coordinacióMaterials nanoestructuratsPhysical and Theoretical Chemistry
researchProduct

Evaluation of the electrochemical anion recognition ofNO3−-imprinted poly(Azure A) inNO3−/Cl−mixed solutions by ac-electrogravimetry

2016

Abstract During the reversible electrochemical reactions of the intrinsically conducting polymer (ICP) films, ions are inserted in them to balance the inner charge site of the polymer. For this reason, doped ICP films with anions or cations can be good candidates for the electrochemical removal of contaminant ions from wastewater. In this work, a polymer of a phenothiazine derivative (poly(Azure A or PAA)) was electrosynthesized by cyclic voltammetry in aqueous solutions using nitrate ions as a structural template. After that, PAA film was repeatedly cycled in identical conditions in a monomer-free solution. The electrochemical anion recognition of the nitrate-imprinted poly(Azure A) ( N O …

Conductive polymerAqueous solutionChemistryGeneral Chemical EngineeringInorganic chemistryAzure A02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyElectrochemistry01 natural sciences6. Clean water0104 chemical sciencesDielectric spectroscopychemistry.chemical_compoundElectrogravimetryElectrochemistryCyclic voltammetry0210 nano-technologySelectivityElectrochimica Acta
researchProduct

Improving the onset potential and Tafel slope determination of earth-abundant water oxidation electrocatalysts

2021

To date, a plethora of electrocatalysts for the Oxygen Evolution Reaction (OER) have been proposed. For evaluating their electrocatalytic behavior the determination of the onset potential in each studied electrolyte is a key parameter. Nevertheless, this evaluation becomes particularly problematic for first- transition metal catalysts as well as by the use of electroactive collectors ( e.g. Ni foams) whose redox peaks overlap the onset potential. A usual solution to detect the onset potential requires the availabil- ity of in-situ mass spectrometric determination of the generated oxygen. In this work, we present fast and easier available cyclic voltammetry and coulovoltammetric responses to…

Prussian blueTafel equationMaterials scienceUNESCO::QUÍMICAGeneral Chemical EngineeringInorganic chemistryOxygen evolution02 engineering and technologyElectrolyte010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesRedox:QUÍMICA [UNESCO]0104 chemical sciencesCatalysischemistry.chemical_compoundchemistryElectrochemistryoxidation electrocatalystsHydroxideCyclic voltammetry0210 nano-technology
researchProduct

Design of Bistable Gold@Spin‐Crossover Core–Shell Nanoparticles Showing Large Electrical Responses for the Spin Switching

2019

<p>A simple protocol to prepare core-shell gold@spin-crossover (Au@SCO) nanoparticles (NPs) based on the 1D spin-crossover [Fe(Htrz)<sub>2</sub>(trz)](BF<sub>4</sub>) coordination polymer is reported. The synthesis relies on a two-step approach consisting on a partial surface ligand substitution of the citrate-stabilized Au NPs followed by the controlled growth of a very thin layer of the SCO polymer. As a result, colloidally stable core@shell spherical NPs of 19 nm in size exhibiting a narrow distribution in sizes have been obtained, revealing a switchable SCOshell of <i>ca.</i>4 nm. Temperature-dependent charge transport measurements of an electri…

Materials scienceSpin statesCoordination polymerNanotecnologiaMechanical EngineeringSpin transitionNanoparticleConductanceMolecular electronics02 engineering and technologyCiència dels materials010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical scienceschemistry.chemical_compoundElectrònica molecularDifferential scanning calorimetrychemistryMechanics of MaterialsChemical physicsSpin crossoverGeneral Materials Science0210 nano-technologyAdvanced Materials
researchProduct

Core–Shell Nanoparticles: Design of Bistable Gold@Spin‐Crossover Core–Shell Nanoparticles Showing Large Electrical Responses for the Spin Switching (…

2019

Materials scienceCondensed matter physicsBistabilityMechanics of MaterialsSpin crossoverMechanical EngineeringMolecular electronicsGeneral Materials ScienceCore shell nanoparticlesSpin-½Advanced Materials
researchProduct

Cover Feature: Boosting the Supercapacitive Behavior of CoAl Layered Double Hydroxides via Tuning the Metal Composition and Interlayer Space (Batteri…

2020

SupercapacitorBoosting (machine learning)Materials sciencebusiness.industryLayered double hydroxidesEnergy Engineering and Power Technologyengineering.materialSpace (mathematics)Energy storageMetalChemical engineeringvisual_artElectrochemistryvisual_art.visual_art_mediumengineeringCoalCover (algebra)Electrical and Electronic EngineeringbusinessBatteries & Supercaps
researchProduct

Liquid phase exfoliation of antimonene: systematic optimization, characterization and electrocatalytic properties

2019

Antimonene, a novel group 15 two-dimensional material, is attracting great attention due to its outstanding physical and chemical properties. Despite its thermodynamic stability, the pronounced covalent character of the interlayer interactions imposes severe limitations on its exfoliation into mono- and few-layer. Here, we develop a systematic study of liquid phase exfoliation (LPE) with the aim to optimize antimonene production in terms of concentration and dimensional anisotropy, investigating the most relevant experimental factors affecting the exfoliation: pre-processing of pristine antimony, solvent selection based on Hansen solubility parameters and ultrasound conditions. Moreover, ex…

Materials scienceRenewable Energy Sustainability and the Environment02 engineering and technologyGeneral ChemistryQuímicaCiència dels materials021001 nanoscience & nanotechnologyExfoliation jointCatalysisCharacterization (materials science)Hildebrand solubility parametersymbols.namesakeLiquid-phase exfoliationX-ray photoelectron spectroscopyChemical engineeringAntimoneneYield (chemistry)symbolsGeneral Materials ScienceChemical stability0210 nano-technologyRaman spectroscopy
researchProduct

Enhancing the electrocatalytic activity and stability of Prussian blue analogues by increasing their electroactive sites through the introduction of …

2021

Prussian blue analogues (PBAs) have been proven as excellent Earth-abundant electrocatalysts for the oxygen evolution reaction (OER) in acidic, neutral and alkaline media. Further improvements can be achieved by increasing their electrical conductivity, but scarce attention has been paid to quantify the electroactive sites of the electrocatalyst when this enhancement occurs. In this work, we have studied how the chemical design influences the specific density of electroactive sites in different Au-PBA nanostructures. Thus, we have first obtained and fully characterized a variety of monodisperse core@shell hybrid nanoparticles of Au@PBA (PBA of NiIIFeII and CoIIFeII) with different shell siz…

Tafel equationPrussian blueMaterials scienceOxygen evolutionNanoparticle02 engineering and technologyOverpotential010402 general chemistry021001 nanoscience & nanotechnologyElectrochemistryElectrocatalyst01 natural sciences0104 chemical sciencesCatalysischemistry.chemical_compoundchemistryChemical engineeringparasitic diseasesGeneral Materials Science0210 nano-technologyNanoscale
researchProduct

Cover Feature: Boosting the Supercapacitive Behavior of CoAl Layered Double Hydroxides via Tuning the Metal Composition and Interlayer Space

2020

The Cover Feature illustrates the improvement in the supercapacitive performance of CoAl layered double hydroxides (LDHs) after enlarging their interlayer space with anionic surfactants. This enhancement in the energy storage is ascribed to the increase in the electrochemical surface area (ECSA), the higher electrolyte diffusion, and the partial aluminum dissolution. PNICTOCHEM 804110 (G.A.) CIDEGENT/2018/001 Portada de revista, actividad de difusión.

UNESCO::QUÍMICA:QUÍMICA [UNESCO]
researchProduct