6533b82bfe1ef96bd128e10a

RESEARCH PRODUCT

Reinforced Room-Temperature Spin Filtering in Chiral Paramagnetic Metallopeptides

Marta GalbiatiSilvia Giménez-santamarinaSalvador Cardona‐serraRoger Sanchis-gualPrakash Chandra MondalRamón Torres-cavanillasGarin Escorcia-arizaMichele SessoloAlicia Forment-aliagaSergio TatayLorena E. RosalenyAlejandro Gaita-ariñoIsaac Brotons-alcázar

subject

Surface PropertiesFOS: Physical sciencesApplied Physics (physics.app-ph)02 engineering and technology010402 general chemistryLanthanoid Series Elements01 natural sciencesBiochemistryCatalysisElectron TransportParamagnetismColloid and Surface ChemistryElectrical currentMesoscale and Nanoscale Physics (cond-mat.mes-hall)ElectrochemistryOrganometallic CompoundsMoleculeAmino Acid SequenceSpin-½Spin filteringCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsChemistryElectron Spin Resonance SpectroscopyTemperatureStereoisomerismPhysics - Applied PhysicsGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesModels ChemicalCondensed Matter::Strongly Correlated ElectronsGoldPeptides0210 nano-technologySelectivity

description

Chirality-induced spin selectivity (CISS), whereby helical molecules polarize the spin of electrical current, is an intriguing effect with potential applications in nanospintronics. In this nascent field, the study of the CISS effect using paramagnetic chiral molecules, which could introduce another degree of freedom in controlling the spin transport, remains so far unexplored. To address this challenge, herein we propose the use of self-assembled monolayers (SAMs) of helical lanthanide-binding peptides. To elucidate the effect of the paramagnetic nuclei, monolayers of the peptide coordinating paramagnetic or diamagnetic ions are prepared. By means of spin-dependent electrochemistry, the CISS effect is demonstrated by cyclic voltammetry and electrochemical impedance measurements for both samples. Additionally, an implementation of the standard liquid-metal drop electron transport setup has been carried out, and this process helped to demonstrate the peptides' suitability for solid-state devices. Remarkably, the inclusion of a paramagnetic center in the peptide increases the spin polarization as was independently proved by different techniques. These findings permit the inclusion of magnetic biomolecules in the CISS field and pave the way to their implementation in a new generation of (bio)spintronic nanodevices.

10.1021/jacs.0c07531http://dx.doi.org/10.1021/jacs.0c07531