0000000000336033
AUTHOR
Isaac Brotons-alcázar
Meltable, Glass-Forming, Iron Zeolitic Imidazolate Frameworks
WS2/MoS2 Heterostructures via Thermal Treatment of MoS2 Layers Electrostatically Functionalized with W3S4 Molecular Clusters
The preparation of 2D stacked layers that combine flakes of different nature, gives rise to countless number of heterostructures where new band alignments, defined at the interfaces, control the electronic properties of the system. Among the large family of 2D/2D heterostructures, the one formed by the combination of the most common semiconducting transition metal dichalcogenides WS2/MoS2, has awaken great interest due to its photovoltaic and photoelectrochemical properties. Solution as well as dry physical methods have been developed to optimize the synthesis of these heterostructures. Here a suspension of negatively charged MoS2 flakes is mixed with a methanolic solution of a cationic W3S…
Reinforced Room-Temperature Spin Filtering in Chiral Paramagnetic Metallopeptides
Chirality-induced spin selectivity (CISS), whereby helical molecules polarize the spin of electrical current, is an intriguing effect with potential applications in nanospintronics. In this nascent field, the study of the CISS effect using paramagnetic chiral molecules, which could introduce another degree of freedom in controlling the spin transport, remains so far unexplored. To address this challenge, herein we propose the use of self-assembled monolayers (SAMs) of helical lanthanide-binding peptides. To elucidate the effect of the paramagnetic nuclei, monolayers of the peptide coordinating paramagnetic or diamagnetic ions are prepared. By means of spin-dependent electrochemistry, the CI…
Molecular stabilization of chemically exfoliated bare MnPS3 layers
Transition metal chalcogenophosphates of general formula MPX3 have attracted recent interest in the field of 2D materials due to the possibility of tuning their properties when reaching the 2D limit. Several works address this challenge by dry mechanical exfoliation. However, only a few of them use a scalable approach. In this work, we apply a general chemical protocol to exfoliate MnPS3. The method uses in a first step chemical intercalation and liquid phase exfoliation, followed in a second step by the addition of molecules used as capping agents on the inorganic layers. Therefore, molecules of different nature prompts the quality of the exfoliated material and its stabilization in aqueou…
WS 2 /MoS 2 Heterostructures through Thermal Treatment of MoS 2 Layers Electrostatically Functionalized with W 3 S 4 Molecular Clusters
The preparation of 2D stacked layers combining flakes of different nature gives rise to countless numbers of heterostructures where new band alignments, defined at the interfaces, control the electronic properties of the system. Among the large family of 2D/2D heterostructures, the one formed by the combination of the most common semiconducting transition metal dichalcogenides, WS2 /MoS2 , has awakened great interest owing to its photovoltaic and photoelectrochemical properties. Solution as well as dry physical methods have been developed to optimize the synthesis of these heterostructures. Here, a suspension of negatively charged MoS2 flakes is mixed with a methanolic solution of a cationi…
Electrochemical Synthesis of an Organic Thermoelectric Power Generator.
[EN] Energy harvesting through residual heat is considered one of the most promising ways to power wearable devices. In this work, thermoelectric textiles were prepared by coating the fabrics, first with multiple-wall carbon nanotubes (MWCNTs) by using the layer-by-layer technique and second with poly(3,4-ethylenedioxythiophene) (PEDOT) deposited by electrochemical polymerization. Sodium deoxycholate and poly(diallyldimethylammonium chloride) were used as stabilizers to prepare the aqueous dispersions of MWCNTs. The electrochemical deposition of PEDOT on the MWCNT-coated fabric was carried out in a three-electrode electrochemical cell. The polymerization of PEDOT on the fabric increased the…