0000000000003838
AUTHOR
Jose A. Carrasco
Carbon Nanotubes: In-Situ Growth of Ultrathin Films of NiFe-LDHs: Towards a Hierarchical Synthesis of Bamboo-Like Carbon Nanotubes (Adv. Mater. Interfaces 6/2014)
In-Situ Growth of Ultrathin Films of NiFe-LDHs: Towards a Hierarchical Synthesis of Bamboo-Like Carbon Nanotubes
The synthesis of ultrathin films (UTFs) of NiFe-LDHs has been achieved by means of an in situ hydrothermal approach, leading to a flat disposition of the LDH crystallites on the substrate, in clear contrast to the most common perpendicular orientation reported to date. Experimental factors like time of synthesis or the nature of the substrate, seem to play a crucial role during the growing process. The 2D morphology of the NiFe-LDH crystallites was kept after a calcination procedure, leading to a topotactic transformation into mixed-metal oxide platelets. Hereby, in order to study the catalytic behavior of our samples, a chemical vapor deposition process is explored upon the as-synthesized …
Boosting the supercapacitive behavior of CoAl-layered double hydroxides via tuning the metal composition and interlayer space
Layered double hydroxides (LDHs) are promising supercapacitor materials due to their wide chemical versatility, earth abundant metals and high specific capacitances. Many parameters influencing the supercapacitive performance have been studied such as the chemical composition, the synthetic approaches, and the interlayer anion. However, no systematic studies about the effect of the basal space have been carried out. Here, two-dimensional (2D) CoAl-LDHs were synthesized through anion exchange reactions using surfactant molecules in order to increase the interlayer space (ranging from 7.5 to 32.0 Å). These compounds exhibit similar size and dimensions but different basal space to explore excl…
CVD synthesis of carbon spheres using NiFe-LDHs as catalytic precursors: structural, electrochemical and magnetoresistive properties
The gram-scale synthesis of carbon spheres with a diameter of ca. 740 nm has been achieved by means of a chemical vapour deposition method using NiFe-layered double hydroxides as a solid catalytic precursor. The presence of the catalyst (FeNi3) allows controlling the final size distribution, resulting in a monodisperse sample. Their structural properties exhibited a high degree of graphitization according to their ID/IG ratio. In addition, their morphological features were unveiled by FIB-SEM and HRTEM, showing that they are formed by solid inner cores, and presenting labile chain-like structures due to accretion procedures. The solution and posterior sonication of the samples in toluene ga…
Cover Feature: Fundamental Insights into the Covalent Silane Functionalization of NiFe Layered Double Hydroxides (Chem. Eur. J. 29/2020)
Layered double hydroxide nanocomposites based on carbon nanoforms
Abstract Carbon nanoform (CNF)/layered double hydroxide (LDH) nanocomposites have been widely studied in recent years thanks to the combination of properties of both LDH and carbon nanomaterials. They exhibit improved or unexpected properties as a consequence of their hierarchical structures. There are three main reported approaches to prepare the nanocomposites: reassembly of nanocarbons and LDHs, direct formation of LDHs on nanocarbon materials, and the direct synthesis of nanocarbons on the LDH phase. The resulting CNF/LDH nanocomposites exhibit improved conductivity, mechanical properties, and redox reactivity; moreover, the hybridization confers hierarchical porosities and better dispe…
Deciphering the Role of Dipolar Interactions in Magnetic Layered Double Hydroxides
Layered double hydroxides (LDHs) exhibit unparalleled anion exchange properties and the ability to be exfoliated into 2D nanosheets, which can be used as a building block to fabricate a wide variety of hybrid functional nanostructured materials. Still, if one wants to use LDHs as a magnetic building blocks in the design of complex architectures, the role played by the dipolar magnetic interactions in these layered materials needs to be understood. In this work, we synthesized and characterized a five-membered CoAl-LDH series with basal spacing ranging from 7.5 to 34 Å. A detailed experimental characterization allows us to conclude that the main factor governing the dipolar interactions betw…
Continuous‐Flow Synthesis of High‐Quality Few‐Layer Antimonene Hexagons
2D materials show outstanding properties that can bring many applications in different technological fields. However, their uses are still limited by production methods. In this context, antimonene is recently suggested as a new 2D material to fabricate different (opto)electronic devices, among other potential applications. This work focuses on optimizing the synthetic parameters to produce high-quality antimonene hexagons and their implementation in a large-scale manufacturing procedure. By means of a continuous-flow synthesis, few-layer antimonene hexagons with ultra-large lateral dimensions (up to several microns) and a few nanometers thick are isolated. The suitable chemical post-treatm…
Liquid phase exfoliation of carbonate-intercalated layered double hydroxides.
Direct exfoliation of a carbonate layered double hydroxide (LDH) has been achieved by using a novel horn-probe sonic tip, avoiding the development of time-consuming anion-exchange reactions. The most suitable solvents were chosen based on the Hildebrand solubility parameters and the thickness of the exfoliated nanosheets confirmed unambiguously the successful delamination.
Influence of the Interlayer Space on the Water Oxidation Performance in a Family of Surfactant-Intercalated NiFe-Layered Double Hydroxides
Layered double hydroxides (LDHs) are low dimensional materials that act as benchmark catalysts for the oxygen evolution reaction (OER). Many LDH properties affecting the OER have been studied to reach the optimal efficiency but no systematic studies concerning the influence of the interlayer space have been developed. In this context, these materials allow a large tunability in their chemical composition enabling the substitution of the interlayer anion and therefore modifying exclusively the basal space. Here, we synthesize by anion exchange reactions a surfactantintercalated family of NiFe-LDHs with increasing basal spacing ranging from 8.0 to 31.6 Å (one of the largest reported so far fo…
Room Temperature Magnetism in Layered Double Hydroxides due to Magnetic Nanoparticles
Some recent reports claiming room temperature spontaneous magnetization in layered double hydroxides (LDHs) have been published; however, the reported materials cause serious concern as to whether this cooperative magnetic behavior comes from extrinsic sources, such as spinel iron oxide nanoparticles. The syntheses of crystalline Fe(3+)-based LDHs with and without impurities have been developed, highlighting the care that must be taken during the synthetic process in order to avoid misidentification of magnetic LDHs.
Fundamental Insights into the Covalent Silane Functionalization of NiFe Layered Double Hydroxides
Layered double hydroxides (LDHs) are a class of 2D anionic materials exhibiting wide chemical versatility and promising applications in different fields, ranging from catalysis to energy storage and conversion. However, the covalent chemistry of this kind of 2D materials is still barely explored. Herein, the covalent functionalization with silanes of a magnetic NiFe-LDH is reported. The synthetic route consists of a topochemical approach followed by anion exchange reaction with surfactant molecules prior to covalent functionalization with the (3-aminopropyl)triethoxysilane (APTES) molecules. The functionalized NiFe-APTES was fully characterized by X-ray diffraction, infrared spectroscopy, e…
Influence of morphology in the magnetic properties of layered double hydroxides
We report the controlled synthesis of magnetic CoAl and NiFe layered double hydroxides (LDHs) endowed with well-defined morphology (hexagonal and flower-like shapes) by means of modified homogeneous precipitation. These layered magnets display high crystallinity and micrometric size, thus offering a perfect scenario for the elucidation of the role exerted by distortion of the layers in their magnetic behaviour. The magnetic properties have been investigated by means of DC and AC magnetic susceptibility measurements and isothermal magnetization, demonstrating that the distortion of the nanosheets induces a magnetically more disordered behaviour, with marked spin-glass nature, independently o…
Alkoxide-intercalated CoFe-layered double hydroxides as precursors of colloidal nanosheet suspensions: structural, magnetic and electrochemical properties
Alkoxide-intercalated CoFe-layered double hydroxides (CoFe–LDHs) were synthesized via the non-aqueous methanolic route. According to powder X-ray diffraction and field emission scanning electron microscopy, they exhibit a nanosized plate-like morphology with a basal space of 9.21 A. The hydrolysis of the material in water leads to colloidal suspensions of nanosheets with lateral dimensions of about 20 nm and thicknesses of ca. 4 nm as demonstrated by atomic force microscopy and dynamic light scattering. Atomic resolution scanning transmission electron microscopy combined with electron energy-loss spectroscopy confirm the high crystalline quality of the crystals and the proper Co/Fe stoichio…
Cover Feature: Boosting the Supercapacitive Behavior of CoAl Layered Double Hydroxides via Tuning the Metal Composition and Interlayer Space (Batteries & Supercaps 6/2020)
Small-pore driven high capacitance in a hierarchical carbon via carbonization of Ni-MOF-74 at low temperatures
A hierarchical porous carbon prepared via direct carbonization of Ni-MOF-74 loaded with furfuryl alcohol at 450 °C displays high specific capacitance in comparison with other MOF-derived carbons as a result of the formation of micropores smaller than 1 nm.
Alkoxide-intercalated NiFe-layered double hydroxides magnetic nanosheets as efficient water oxidation electrocatalysts
Alkoxide-intercalated NiFe-layered double hydroxides were synthesized via the nonaqueous methanolic route. These nanoplatelets exhibit high crystalline quality as demonstrated by atomic resolution scanning transmission electron microscopy combined with electron energy-loss spectroscopy. Moreover, the presence of the alkoxide moieties has been unambiguously demonstrated by means of thermogravimetric analysis coupled to a mass spectrometer. These NiFe-LDHs can be exfoliated in water or organic solvents and processed into homogeneous ultra-thin films (< 3nm thick) with the assistance of O2-plasma. The study of their behaviour as water oxidation electrocatalysts has shown an outstanding perf…
Antimonene: a tuneable post-graphene material for advanced applications in optoelectronics, catalysis, energy and biomedicine
The post-graphene era is undoubtedly marked by two-dimensional (2D) materials such as quasi-van der Waals antimonene. This emerging material has a fascinating structure, exhibits a pronounced chemical reactivity (in contrast to graphene), possesses outstanding electronic properties and has been postulated for a plethora of applications. However, chemistry and physics of antimonene remain in their infancy, but fortunately recent discoveries have shed light on its unmatched allotropy and rich chemical reactivity offering a myriad of unprecedented possibilities in terms of fundamental studies and applications. Indeed, antimonene can be considered as one of the most appealing post-graphene 2D m…