0000000000003848

AUTHOR

Julio Gómez-herrero

showing 12 related works from this author

Solvent-Induced Delamination of a Multifunctional Two Dimensional Coordination Polymer

2012

A coordination polymer is fully exfoliated by solvent-assisted interaction only. The soft-delamination process results from the structure of the starting material, which shows a layered structure with weak layer-to-layer interactions and cavities with the ability to locate several solvents in an unselective way. These results represent a significant step forward towards the production of structurally designed one-molecule thick 2D materials with tailored physico-chemical properties.

Solventchemistry.chemical_compoundMaterials scienceChemical engineeringchemistryMechanics of MaterialsCoordination polymerMechanical EngineeringDelaminationGeneral Materials ScienceComposite materialLayered structureAdvanced Materials
researchProduct

Exfoliation of Alpha-Germanium: A Covalent Diamond-Like Structure

2021

2D materials have opened a new field in materials science with outstanding scientific and technological impact. A largely explored route for the preparation of 2D materials is the exfoliation of layered crystals with weak forces between their layers. However, its application to covalent crystals remains elusive. Herein, a further step is taken by introducing the exfoliation of germanium, a narrow-bandgap semiconductor presenting a 3D diamond-like structure with strong covalent bonds. Pure α-germanium is exfoliated following a simple one-step procedure assisted by wet ball-milling, allowing gram-scale fabrication of high-quality layers with large lateral dimensions and nanometer thicknesses.…

Materials scienceFabricationGram-scale preparationchemistry.chemical_elementGermaniumNanotechnology02 engineering and technologyengineering.material010402 general chemistry01 natural sciencesAlpha-germanium nanolayersTechnological impactGeneral Materials ScienceBandgap modulationMaterialsbusiness.industryMechanical EngineeringDiamondQuímica021001 nanoscience & nanotechnology2D materialsExfoliation joint0104 chemical sciencesSemiconductorLiquid-phase exfoliationchemistryMechanics of MaterialsCovalent bondengineeringNanometre0210 nano-technologybusiness
researchProduct

Single layers of a multifunctional laminar Cu(I,II) coordination polymer.

2010

A multifunctional bidimensional mixed-valence copper coordination polymer [Cu2Br(IN)2]n (IN = isonicotinato) has been characterized in crystal phase and isolated on graphite surface as single sheets.

Models MolecularMaterials scienceCoordination polymerPolymersSurface Propertieschemistry.chemical_elementCrystallography X-RayCatalysisCrystalchemistry.chemical_compoundPhase (matter)Polymer chemistryMaterials ChemistryOrganometallic CompoundsGraphiteGroup 2 organometallic chemistrychemistry.chemical_classificationMetals and AlloysLaminar flowGeneral ChemistryPolymerCopperSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographychemistryCeramics and CompositesGraphiteIsonicotinic AcidsCopperChemical communications (Cambridge, England)
researchProduct

Continuous‐Flow Synthesis of High‐Quality Few‐Layer Antimonene Hexagons

2021

2D materials show outstanding properties that can bring many applications in different technological fields. However, their uses are still limited by production methods. In this context, antimonene is recently suggested as a new 2D material to fabricate different (opto)electronic devices, among other potential applications. This work focuses on optimizing the synthetic parameters to produce high-quality antimonene hexagons and their implementation in a large-scale manufacturing procedure. By means of a continuous-flow synthesis, few-layer antimonene hexagons with ultra-large lateral dimensions (up to several microns) and a few nanometers thick are isolated. The suitable chemical post-treatm…

Materials sciencebusiness.industryContinuous flow02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences0104 chemical sciencesElectronic Optical and Magnetic MaterialsBiomaterialsQuality (physics)ElectrochemistryOptoelectronics0210 nano-technologybusinessLayer (electronics)Colloidal synthesisAdvanced Functional Materials
researchProduct

Stimuli-responsive hybrid materials: breathing in magnetic layered double hydroxides induced by a thermoresponsive molecule

2014

[EN] A hybrid magnetic multilayer material of micrometric size, with highly crystalline hexagonal crystals consisting of CoAl-LDH ferromagnetic layers intercalated with thermoresponsive 4-(4-anilinophenylazo)benzenesulfonate (AO5) molecules diluted (ratio 9 : 1) with a flexible sodium dodecylsulphate (SDS) surfactant has been obtained. The resulting material exhibits thermochromism attributable to the isomerization between the azo (prevalent at room temperature) and the hydrazone (favoured at higher temperatures) tautomers, leading to a thermomechanical response. In fact, these crystals exhibited thermally induced motion triggering remarkable changes in the crystal morphology and volume. In…

Magnetic couplingsMagnetismLayered double hydroxidesFerromagnetic layersINTERCALATION COMPOUNDengineering.materialThermotropismNI-ALQuantitative Biology::Subcellular ProcessesCondensed Matter::Materials ScienceMETAL-ORGANIC FRAMEWORKSchemistry.chemical_compoundCrystallinityQUIMICA ORGANICANuclear magnetic resonanceCrystal morphologiesPHOTOISOMERIZATIONQUIMICA ANALITICANANOPARTICLESPhysics::Chemical PhysicsAZOBENZENEPhysics::Atmospheric and Oceanic PhysicsThermochromismPRUSSIAN BLUEChemistryMagnetismLayered double hydroxidesFísicaQuímicaGeneral ChemistryMoleculesequipment and suppliesChemistryMagnetic multilayersCrystallographyAzobenzeneFerromagnetismHYDROTALCITEengineeringTHERMAL-EXPANSIONHybrid materialhuman activitiesCOORDINATION POLYMERSChemical Science
researchProduct

Intrinsic electrical conductivity of nanostructured metal-organic polymer chains

2012

One-dimensional conductive polymers are attractive materials because of their potential in flexible and transparent electronics. Despite years of research, on the macro- and nano-scale, structural disorder represents the major hurdle in achieving high conductivities. Here we report measurements of highly ordered metal-organic nanoribbons, whose intrinsic (defect-free) conductivity is found to be 104 S m−1, three orders of magnitude higher than that of our macroscopic crystals. This magnitude is preserved for distances as large as 300 nm. Above this length, the presence of structural defects (~ 0.5%) gives rise to an inter-fibre-mediated charge transport similar to that of macroscopic crysta…

Conductive polymerMultidisciplinaryMaterials scienceOrders of magnitude (temperature)General Physics and AstronomyNanotechnologyGeneral ChemistryElectronic structureConductivityArticleGeneral Biochemistry Genetics and Molecular BiologyMetalMolecular wireGapless playbackChemical physicsElectrical resistivity and conductivityvisual_artvisual_art.visual_art_mediumNature Communications
researchProduct

Conductive nanostructures of MMX chains

2010

Crystals of [Pt-2(n-pentylCS(2))(4)I] show a transition from semiconductor to metallic with the increase of the temperature (conductivity is 0.3-1.4 S.cm(-1) at room temperature) and a second metallic metallic transition at 330 K, inferred by electrical conductivity measurements. X-ray diffraction studies carried out at different temperatures (100, 298, and 350 K) confirm the presence of three different phases. The valence-ordering of these phases is analyzed using structural, magnetic, and electrical data. Density functional theory calculations allow a further analysis of the band structure derived for each phase. Nanostructures adsorbed on an insulating surface show electrical conductivit…

MMX polymersMaterials scienceCondensed matter physicsbusiness.industryNanowireConductivityCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsBiomaterialsSemiconductorElectrical resistivity and conductivityPhase (matter)ElectrochemistryDensity functional theoryElectronic band structurebusinessElectrical conductor
researchProduct

Solvent-Induced Delamination of a Multifunctional Two Dimensional Coordination Polymer (Adv. Mater. 15/2013)

2013

Solventchemistry.chemical_compoundMaterials sciencechemistryMechanics of MaterialsCoordination polymerMechanical EngineeringDelaminationGeneral Materials ScienceComposite materialAdvanced Materials
researchProduct

CCDC 883365: Experimental Crystal Structure Determination

2013

Related Article: Almudena Gallego, Cristina Hermosa, Oscar Castillo, Isadora Berlanga, Carlos J. Gómez-García, Eva Mateo-Martí, José I. Martínez, Fernando Flores, Cristina Gómez-Navarro, Julio Gómez-Herrero, Salome Delgado, Félix Zamora|2013|Adv.Mater.|25|2141|doi:10.1002/adma.201204676

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[(mu2- 22'-Disulfanediyldipyrimidine)-(mu2-chloro)-copper methanol solvate]Experimental 3D Coordinates
researchProduct

CCDC 883368: Experimental Crystal Structure Determination

2013

Related Article: Almudena Gallego, Cristina Hermosa, Oscar Castillo, Isadora Berlanga, Carlos J. Gómez-García, Eva Mateo-Martí, José I. Martínez, Fernando Flores, Cristina Gómez-Navarro, Julio Gómez-Herrero, Salome Delgado, Félix Zamora|2013|Adv.Mater.|25|2141|doi:10.1002/adma.201204676

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatestetrakis(mu~3~-chloro)-tetrakis(22'-disulfanediyldipyrimidine)-tetra-copper(i)
researchProduct

CCDC 883367: Experimental Crystal Structure Determination

2013

Related Article: Almudena Gallego, Cristina Hermosa, Oscar Castillo, Isadora Berlanga, Carlos J. Gómez-García, Eva Mateo-Martí, José I. Martínez, Fernando Flores, Cristina Gómez-Navarro, Julio Gómez-Herrero, Salome Delgado, Félix Zamora|2013|Adv.Mater.|25|2141|doi:10.1002/adma.201204676

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[(mu~2~-22'-Disulfanediyldipyrimidine)-(mu~2~-chloro)-copper ethanol solvate]Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 883366: Experimental Crystal Structure Determination

2013

Related Article: Almudena Gallego, Cristina Hermosa, Oscar Castillo, Isadora Berlanga, Carlos J. Gómez-García, Eva Mateo-Martí, José I. Martínez, Fernando Flores, Cristina Gómez-Navarro, Julio Gómez-Herrero, Salome Delgado, Félix Zamora|2013|Adv.Mater.|25|2141|doi:10.1002/adma.201204676

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatescatena-[(mu~2~- 22'-Disulfanediyldipyrimidine)-(mu~2~-chloro)-copper monohydrate]
researchProduct