0000000000004011

AUTHOR

Vesselin Drensky

showing 6 related works from this author

Subvarieties of the Varieties Generated by the SuperalgebraM1, 1(E) orM2(đť’¦)

2003

Abstract Let 𝒦 be a field of characteristic zero, and let us consider the matrix algebra M 2(𝒦) endowed with the ℤ2-grading (𝒦e 11 ⊕ 𝒦e 22) ⊕ (𝒦e 12 ⊕ 𝒦e 21). We define two superalgebras, â„› p and 𝒮 q , where p and q are positive integers. We show that if 𝒰 is a proper subvariety of the variety generated by the superalgebra M 2(𝒦), then the even-proper part of the T 2-ideal of graded polynomial identities of 𝒰 asymptotically coincides with the even-proper part of the graded polynomial identities of the variety generated by the superalgebra â„› p  ⊕ 𝒮 q . This description also affords an even-asymptotic desc…

Discrete mathematicsCombinatoricsPolynomialAlgebra and Number TheorySubvarietyMatrix algebraZero (complex analysis)Field (mathematics)Variety (universal algebra)SuperalgebraMathematicsCommunications in Algebra
researchProduct

Defining relations of minimal degree of the trace algebra of 3Ă—3 matrices

2008

Abstract The trace algebra C n d over a field of characteristic 0 is generated by all traces of products of d generic n × n matrices, n , d ⩾ 2 . Minimal sets of generators of C n d are known for n = 2 and n = 3 for any d as well as for n = 4 and n = 5 and d = 2 . The defining relations between the generators are found for n = 2 and any d and for n = 3 , d = 2 only. Starting with the generating set of C 3 d given by Abeasis and Pittaluga in 1989, we have shown that the minimal degree of the set of defining relations of C 3 d is equal to 7 for any d ⩾ 3 . We have determined all relations of minimal degree. For d = 3 we have also found the defining relations of degree 8. The proofs are based …

Discrete mathematicsDefining relationsTrace algebrasAlgebra and Number TheoryTrace (linear algebra)Degree (graph theory)Matrix invariantsGeneral linear groupField (mathematics)Representation theoryCombinatoricsSet (abstract data type)AlgebraGeneric matricesInvariants of tensorsGenerating set of a groupMathematicsJournal of Algebra
researchProduct

Defining relations of the noncommutative trace algebra of two 3Ă—3 matrices

2006

The noncommutative (or mixed) trace algebra $T_{nd}$ is generated by $d$ generic $n\times n$ matrices and by the algebra $C_{nd}$ generated by all traces of products of generic matrices, $n,d\geq 2$. It is known that over a field of characteristic 0 this algebra is a finitely generated free module over a polynomial subalgebra $S$ of the center $C_{nd}$. For $n=3$ and $d=2$ we have found explicitly such a subalgebra $S$ and a set of free generators of the $S$-module $T_{32}$. We give also a set of defining relations of $T_{32}$ as an algebra and a Groebner basis of the corresponding ideal. The proofs are based on easy computer calculations with standard functions of Maple, the explicit prese…

Polynomial (hyperelastic model)Defining relationsTrace (linear algebra)Trace algebrasApplied MathematicsSubalgebraCenter (category theory)Free moduleNoncommutative geometryRepresentation theoryAlgebraGröbner basisGeneric matricesMatrix invariants and concomitantsGröbner basisMathematicsAdvances in Applied Mathematics
researchProduct

MULTIPLICITIES IN THE MIXED TRACE COCHARACTER SEQUENCE OF TWO 3 Ă— 3 MATRICES

2006

We find explicitly the multiplicities in the (mixed) trace cocharacter sequence of two 3 Ă— 3 matrices over a field of characteristic 0 and show that asymptotically they behave as polynomials of seventh degree. As a consequence we obtain also the multiplicities of certain irreducible characters in the cocharacter sequence of the polynomial identities of 3 Ă— 3 matrices.

Symmetric functionsymbols.namesakePure mathematicsPolynomialSequenceTrace (linear algebra)Degree (graph theory)General MathematicssymbolsField (mathematics)Invariant theoryMathematicsHilbert–Poincaré seriesInternational Journal of Algebra and Computation
researchProduct

On the consequences of the standard polynomial

1998

The purpose of this paper is to shed some light on the polynomial identities of low degree for the n Ă— n matrix algebra over a field of characteristic 0.Our main result is that we have found all the consequences of degree n + 2 of the standard polynomial have calculated the S n+2-character of the T-ideal generated by this polynomial.

CombinatoricsDiscrete mathematicsReciprocal polynomialAlgebra and Number TheoryStable polynomialMinimal polynomial (linear algebra)Alternating polynomialDegree of a polynomialMonic polynomialCharacteristic polynomialMathematicsMatrix polynomialCommunications in Algebra
researchProduct

Computing with Rational Symmetric Functions and Applications to Invariant Theory and PI-algebras

2012

The research of the first named author was partially supported by INdAM. The research of the second, third, and fourth named authors was partially supported by Grant for Bilateral Scientific Cooperation between Bulgaria and Ukraine. The research of the fifth named author was partially supported by NSF Grant DMS-1016086.

Classical Invariant Theory05A15 05E05 05E10 13A50 15A72 16R10 16R30 20G05MacMahon Partition AnalysisHilbert SeriesRational symmetric functions classical invariant theory algebras with polynomial identity cocharacter sequenceMathematics - Rings and AlgebrasCommutative Algebra (math.AC)Mathematics - Commutative AlgebraRational Symmetric FunctionsAlgebras with Polynomial IdentitySettore MAT/02 - AlgebraRings and Algebras (math.RA)Noncommutative Invariant TheoryFOS: MathematicsCocharacter SequenceMathematics - CombinatoricsCombinatorics (math.CO)
researchProduct