0000000000004179
AUTHOR
Ingo Loa
Vibrational properties of ZnTe at high pressures
Raman spectra of ZnTe were measured under hydrostatic pressures up to 15 GPa at T = 300 K. Results for the frequencies of first- and second-order Raman features of the zincblende phase (0-9.5 GPa) are used to set up a rigid-ion model of the phonon dispersion relations under pressure. Calculated phonon densities of states, mode Gruneisen parameters and the thermal expansion coefficient as a function of pressure are discussed. The effect of pressure on the widths and intensities of Raman spectral features is considered. Raman spectra of high-pressure phases of ZnTe are reported. These spectra indicate the possible existence of a new phase near 13 GPa, intermediate between the cinnabar and ort…
Pressure dependence of optical phonons in ZnCdSe alloys
5 páginas, 2 figuras, 2 tablas.-- PACS 62.50.+p, 63.20.Dj, 78.30.Fs, 78.66.Hf.-- et al.
The high-pressure, high-temperature phase diagram of cerium
Abstract We present an experimental study of the high-pressure, high-temperature behaviour of cerium up to ∼22 GPa and 820 K using angle-dispersive x-ray diffraction and external resistive heating. Studies above 820 K were prevented by chemical reactions between the samples and the diamond anvils of the pressure cells. We unambiguously measure the stability region of the orthorhombic oC4 phase and find it reaches its apex at 7.1 GPa and 650 K. We locate the α-cF4–oC4–tI2 triple point at 6.1 GPa and 640 K, 1 GPa below the location of the apex of the oC4 phase, and 1–2 GPa lower than previously reported. We find the α-cF4 → tI2 phase boundary to have a positive gradient of 280 K (GPa)−1, less…
Temperature dependence of Raman scattering and luminescence of the disordered Zn0.5Cd0.5Se alloy
Abstract We report on luminescence and Raman scattering measurements of zincblende Zn0.5Cd0.5Se thin film grown by molecular beam epitaxy. From the luminescence data of the exciton peak, the dependence of the energy gap with temperature [ d E g / d T=(4.35±0.01)×10 −4 meV / K ] and zero-temperature phonon renormalization energy ( Δ E(0)=30±1 meV ) have been obtained. The broadening of the excitonic emission as the temperature increases is mainly due to scattering processes with longitudinal optical phonons and residual ionized impurities. Raman scattering shows a multiphonon structure, which depends on the temperature. At low temperatures, up to the fifth-order phonon peaks appear due to re…
High-Pressure Raman Study of Zincblende, Cinnabar, and Cmcm Phases Of ZnTe
Raman measurements of ZnTe have been performed at pressures up to 15 GPa. Frequencies, line widths, and intensities of first- and second-order Raman features of the zincblende phase (0-9.5 GPa) were studied in detail. In this note, we focus on the Raman spectra of the high-pressure cinnabar and Cmcm phases. In the transition regime from cinnabar to Cmcm (12.2 to 13.7 GPa) the Raman data indicate the possible existence of a new intermediate high-pressure phase.