0000000000004208
AUTHOR
Fernando Luis
Fragmenting gadolinium: Mononuclear polyoxometalate-based magnetic coolers for ultra-low temperatures
The polyoxometalate clusters with formula [Gd(W 5O 18) 2] 9- and [Gd(P 5W 30O 110)] 12- each carry a single magnetic ion of gadolinium, which is the most widespread element among magnetic refrigerant materials. In an adiabatic demagnetization, the lowest attainable temperature is limited by the presence of magnetic interactions that bring about magnetic order below a critical temperature. We demonstrate that this limitation can be overcome by chemically engineering the molecules in such a way to effectively screen all magnetic interactions, suggesting their use as ultra-low-temperature coolers. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Insertion of a single-molecule magnet inside a ferromagnetic lattice based on a 3D bimetallic oxalate network: Towards molecular analogues of permanent magnets
The insertion of the single-molecule magnet (SMM) [MnIII(salen) (H2O)]2 2+ (salen2-=N,N-ethylenebis- (salicylideneiminate)) into a ferromagnetic bimetallic oxalate network affords the hybrid compound [MnIII(salen)(H2O)] 2[MnIICrIII(ox)3] 2×(CH3OH)×(CH3CN)2 (1). This cationic Mn2 cluster templates the growth of crystals formed by an unusual achiral 3D oxalate network. The magnetic properties of this hybrid magnet are compared with those of the analogous compounds [Mn III(salen)(H2O)]2[ZnIICr III(ox)3]2×(CH3OH) ×(CH3CN)2 (2) and [InIII(sal 2-trien)][MnIICrIII(ox)3] ×(H2O)0.25×(CH3OH) 0.25×(CH3CN)0.25 (3), which are used as reference compounds. In 2 it has been shown that the magnetic isolatio…
Tunable crossover between one- and three-dimensional magnetic dynamics inCoIIsingle-chain magnets organized by halogen bonding
Low-temperature magnetometry, ac susceptibility, and calorimetry have been employed to study Co-based single-chain magnets (SCMs) organized through halogen bonding. Magnetic hysteresis and maxima in the dc and ac susceptibilities, respectively, confirm the SCM behavior of the system. Several characteristic magnetic relaxation regimes are observed at different temperatures, which can be associated with both intra- and interchain exchange interactions. Remarkably, tweaking the rate at which an external magnetic field is swept along the axis of the chains enables a controlled transition between the one- and three-dimensional dynamics. Experiments on an isostructural Co-based SCM system crystal…
Coherent manipulation of three-qubit states in a molecular single-ion magnet
We study the quantum spin dynamics of nearly isotropic Gd3+ ions entrapped in polyoxometalate molecules and diluted in crystals of a diamagnetic Y3+ derivative. The full energy-level spectrum and the orientations of the magnetic anisotropy axes have been determined by means of continuous-wave electron paramagnetic resonance experiments, using X-band (9-10 GHz) cavities and on-chip superconducting waveguides and 1.5-GHz resonators. The results show that seven allowed transitions between the 2S+1 spin states can be separately addressed. Spin coherence T2 and spin-lattice relaxation T1 rates have been measured for each of these transitions in properly oriented single crystals. The results sugg…
A quantum spin liquid candidate isolated in a two-dimensional CoIIRhIII bimetallic oxalate network
A quantum spin liquid (QSL) is an elusive state of matter characterized by the absence of long-range magnetic order, even at zero temperature, and by the presence of exotic quasiparticle excitations. In spite of their relevance for quantum communication, topological quantum computation and the understanding of strongly correlated systems, like high-temperature superconductors, the unequivocal experimental identification of materials behaving as QSLs remains challenging. Here, we present a novel 2D heterometallic oxalate complex formed by high-spin Co(II) ions alternating with diamagnetic Rh(III) in a honeycomb lattice. This complex meets the key requirements to become a QSL: a spin ½ ground…
Cover Picture: Insertion of a Single-Molecule Magnet inside a Ferromagnetic Lattice Based on a 3D Bimetallic Oxalate Network: Towards Molecular Analogues of Permanent Magnets (Chem. Eur. J. 6/2014)
Metallorganic routes to nanoscale iron and titanium oxide particles encapsulated in mesoporous alumina: formation, physical properties, and chemical reactivity.
Iron and titanium oxide nanoparticles have been synthesized in parallel mesopores of alumina by a novel organometallic "chimie douce" approach that uses bis(toluene)iron(0) (1) and bis(toluene)titanium(0) (2) as precursors. These complexes are molecular sources of iron and titanium in a zerovalent atomic state. In the case of 1, core shell iron/iron oxide particles with a strong magnetic coupling between both components, as revealed by magnetic measurements, are formed. Mossbauer data reveal superparamagnetic particle behavior with a distinct particle size distribution that confirms the magnetic measurements. The dependence of the Mossbauer spectra on temperature and particle size is explai…
Single-molecule magnetic behavior in a neutral terbium(III) complex of a picolinate-based nitronyl nitroxide free radical
The terdentate anionic picolinate-based nitronyl nitroxide (picNN) free radical forms neutral and robust homoleptic complexes with rare earth-metal ions. The nonacoordinated Tb3+ complex Tb(picNN)3• 6H2O is a single-molecule magnet with an activation energy barrier Δ = 22.8 ± 0.5 K and preexponential factor τ0 = (5.5 ± 1.1) × 10-9 s. It shows magnetic hysteresis below 1 K. © 2011 American Chemical Society.
Three addressable spin qubits in a molecular single-ion magnet
We show that several qubits can be integrated in a single magnetic ion, using its internal electronic spin states with energies tuned by a suitably chosen molecular environment. This approach is illustrated with a nearly-isotropic Gd(III) ion entrapped in a polyoxometalate molecule. Experiments with microwave technologies, either three dimensional cavities or quantum superconducting circuits, show that this magnetic molecule possesses the number of spin states and the set of coherently addressable transitions connecting these states that are needed to perform a universal three-qubit processor or, equivalently, a d=8-level 'qudit'. Our findings open prospects for developing more sophisticate…
Hybrid magnetic/superconducting materials obtained by insertion of a single-molecule magnet into TaS2 layers
et al.
Three addressable spin qubits in a GdW30 single-ion magnet
Resumen del trabajo presentado a la XXXVI Reunión Bienal de la Real Sociedad Española de Física, celebrada en Santiago de Compostela del 17 al 21 de julio de 2017.
Mononuclear lanthanide single molecule magnets based on the polyoxometalates [Ln(W5O18)2]9- and [Ln(beta2-SiW11O39)2]13- (Ln(III) = Tb, Dy, Ho, Er, Tm, and Yb).
The first two families of polyoxometalate-based single-molecule magnets (SMMs) are reported here. Compounds of the general formula [Ln(W(5)O(18))(2)](9-) (Ln(III) = Tb, Dy, Ho, and Er) and [Ln(SiW(11)O(39))(2)](13-) (Ln(III) = Tb, Dy, Ho, Er, Tm, and Yb) have been magnetically characterized with static and dynamic measurements. Slow relaxation of the magnetization, typically associated with SMM-like behavior, was observed for [Ln(W(5)O(18))(2)](9-) (Ln(III) = Ho and Er) and [Ln(SiW(11)O(39))(2)](13-) (Ln(III) = Dy, Ho, Er, and Yb). Among them, only the [Er(W(5)O(18))(2)](9-) derivative exhibited such a behavior above 2 K with an energy barrier for the reversal of the magnetization of 55 K. …
Gd-based single-ion magnets with tunable magnetic anisotropy: Molecular design of spin qubits
et al.
Optimal coupling of HoW$_{10}$ molecular magnets to superconducting circuits near spin clock transitions
A central goal in quantum technologies is to maximize $G$T$_{2}$, where $G$ stands for the coupling of a qubit to control and readout signals and T$_{2}$ is the qubit's coherence time. This is challenging, as increasing $G$ (e.g. by coupling the qubit more strongly to external stimuli) often leads to deleterious effects on T$_{2}$. Here, we study the coupling of pure and magnetically diluted crystals of HoW$_{10}$ magnetic clusters to microwave superconducting coplanar waveguides. Absorption lines give a broadband picture of the magnetic energy level scheme and, in particular, confirm the existence of level anticrossings at equidistant magnetic fields determined by the combination of crysta…
Molecular spins for quantum computation
Spins in solids or in molecules possess discrete energy levels, and the associated quantum states can be tuned and coherently manipulated by means of external electromagnetic fields. Spins therefore provide one of the simplest platforms to encode a quantum bit (qubit), the elementary unit of future quantum computers. Performing any useful computation demands much more than realizing a robust qubit—one also needs a large number of qubits and a reliable manner with which to integrate them into a complex circuitry that can store and process information and implement quantum algorithms. This ‘scalability’ is arguably one of the challenges for which a chemistry-based bottom-up approach is best-s…
Spin-lattice relaxation via quantum tunneling in anEr3+-polyoxometalate molecular magnet
We investigate the mechanism of spin-lattice relaxation of Er ions encapsulated in polyoxometalate clusters, which below 4 K can only reverse its spin via quantum tunneling processes. The temperature-independent rate −1 is, at zero field, ten orders of magnitude larger than the rates predicted for direct phonon-induced processes. In addition, we observe that −1 is suppressed by external magnetic bias and hyperfine interactions but enhanced by increasing the concentration of Er ions. The observed relaxation agrees with predictions for pure quantum tunneling, showing that this phenomenon drives the thermalization of electronic spins. A possible link between these two phenomena is discussed, i…
Lanthanoid single-ion magnets based on polyoxometalates with a 5-fold symmetry: The series [LnP5W30O110]12– (Ln3+ = Tb, Dy, Ho, Er, Tm, and Yb)
A robust, stable and processable family of mononuclear lanthanoid complexes based on polyoxometalates (POMs) that exhibit single-molecule magnetic behavior is described here. Preyssler polyanions of general formula [LnP 5W 30O 110] 12- (Ln 3+ = Tb, Dy, Ho, Er, Tm, and Yb) have been characterized with static and dynamic magnetic measurements and heat capacity experiments. For the Dy and Ho derivatives, slow relaxation of the magnetization has been found. A simple interpretation of these properties is achieved by using crystal field theory. © 2012 American Chemical Society.
ChemInform Abstract: Lanthanoid Single-Ion Magnets Based on Polyoxometalates with a 5-Fold Symmetry: The Series [LnP5W30O110]12-(Ln3+: Tb, Dy, Ho, Er, Tm, and Yb).
The compounds K12LnP5W30O110 ·nH2O (Ln3+: Tb, Dy, Ho, Er, Tm, and Yb) are prepared from aqueous solutions of K12.5Na1.5 [NaP5W30O110] and LnCl3 (autoclave, 160 °C, 24 h) and characterized by static and dynamic magnetic measurements.
CCDC 940466: Experimental Crystal Structure Determination
Related Article: Miguel Clemente-León, Eugenio Coronado, Carlos J. Gómez-García, Maurici López-Jordà, Agustín Camón, Ana Repollés, Fernando Luis|2014|Chem.-Eur.J.|20|1669|doi:10.1002/chem.201303044