0000000000004285

AUTHOR

Igor Schapiro

0000-0001-8536-6869

showing 3 related works from this author

OpenMolcas: From Source Code to Insight

2019

In this article we describe the OpenMolcas environment and invite the computational chemistry community to collaborate. The open-source project already includes a large number of new developments realized during the transition from the commercial MOLCAS product to the open-source platform. The paper initially describes the technical details of the new software development platform. This is followed by brief presentations of many new methods, implementations, and features of the OpenMolcas program suite. These developments include novel wave function methods such as stochastic complete active space self-consistent field, density matrix renormalization group (DMRG) methods, and hybrid multico…

Wave functionSource codeField (physics)Computer sciencemedia_common.quotation_subjectInterfacesSemiclassical physics010402 general chemistry0601 Biochemistry and Cell Biology01 natural sciencesComputational scienceNOChemical calculationsMathematical methodschemical calculations ; electron correlation ; interfaces ; mathematical methods ; wave function0103 physical sciences0307 Theoretical and Computational ChemistryPhysical and Theoretical ChemistryWave functionWave function Interfaces Chemical calculations Mathematical methods Electron correlationComputingMilieux_MISCELLANEOUSmedia_commonChemical Physics010304 chemical physicsBasis (linear algebra)business.industryDensity matrix renormalization groupElectron correlationSoftware development0803 Computer Software0104 chemical sciencesComputer Science ApplicationsVisualization[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistrybusiness
researchProduct

Mechanism of excited state deactivation of indan-1-ylidene and fluoren-9-ylidene malononitriles.

2016

Herein, we report complementary computational and experimental evidence supporting the existence, for indan-1-ylidene malononitrile and fluoren-9-ylidene malononitrile, of a non-radiative decay channel involving double bond isomerisation motion. The results of UV-Vis transient absorption spectroscopy highlight that the decay takes place within hundreds of picoseconds. In order to understand the related molecular mechanism, photochemical reaction paths were computed by employing multiconfigurational quantum chemistry. The results indicate that the excited state deactivation occurs via concerted double bond twisting of the dicyanovinyl (DCV) unit coupled with a pyramidalisation of its substit…

chemistry.chemical_classification010304 chemical physicsDouble bondGeneral Physics and AstronomyConical intersection010402 general chemistryPhotochemistry01 natural sciencesQuantum chemistry0104 chemical scienceschemistry.chemical_compoundchemistryExcited state0103 physical sciencesUltrafast laser spectroscopyPhysical and Theoretical ChemistrySpectroscopyIsomerizationMalononitrilePhysical chemistry chemical physics : PCCP
researchProduct

A surface hopping algorithm for nonadiabatic minimum energy path calculations

2015

The article introduces a robust algorithm for the computation of minimum energy paths transiting along regions of near-to or degeneracy of adiabatic states. The method facilitates studies of excited state reactivity involving weakly avoided crossings and conical intersections. Based on the analysis of the change in the multiconfigurational wave function the algorithm takes the decision whether the optimization should continue following the same electronic state or switch to a different state. This algorithm helps to overcome convergence difficulties near degeneracies. The implementation in the MOLCAS quantum chemistry package is discussed. To demonstrate the utility of the proposed procedur…

Surface PropertiesComputationSurface hoppingCASSCFretinalHeterocyclic Compounds 1-RingHeterocyclic CompoundsasulamConvergence (routing)dioxetaneAdiabatic processWave functionSchiff BasesChemistrysurface hopping algorithmGeneral ChemistryKineticsComputational MathematicsExcited statePath (graph theory)RetinaldehydeQuantum TheoryThermodynamicsCarbamatesCASSCF; asulam; dioxetane; minimum energy path; retinal; surface hopping algorithm; thymineProtonsDegeneracy (mathematics)Algorithmminimum energy pathAlgorithmsThymineJournal of Computational Chemistry
researchProduct