0000000000004495
AUTHOR
S. Kaufmann
The impact of mineral dust on cloud formation during the Saharan dust event in April 2014 over Europe
A regional modeling study on the impact of desert dust on cloud formation is presented for a major Saharan dust outbreak over Europe from 2 to 5 April 2014. The dust event coincided with an extensive and dense cirrus cloud layer, suggesting an influence of dust on atmospheric ice nucleation. Using interactive simulation with the regional dust model COSMO-MUSCAT, we investigate cloud and precipitation representation in the model and test the sensitivity of cloud parameters to dust–cloud and dust–radiation interactions of the simulated dust plume. We evaluate model results with ground-based and spaceborne remote sensing measurements of aerosol and cloud properties, as well as the in situ meas…
Isomer shift and magnetic moment of the long-lived 1/2$^{+}$ isomer in $^{79}_{30}$Zn$_{49}$: signature of shape coexistence near $^{78}$Ni
Collinear laser spectroscopy has been performed on the $^{79}_{30}$Zn$_{49}$ isotope at ISOLDE-CERN. The existence of a long-lived isomer with a few hundred milliseconds half-life was confirmed, and the nuclear spins and moments of the ground and isomeric states in $^{79}$Zn as well as the isomer shift were measured. From the observed hyperfine structures, spins $I = 9/2$ and $I = 1/2$ are firmly assigned to the ground and isomeric states. The magnetic moment $\mu$ ($^{79}$Zn) = $-$1.1866(10) $\mu_{\rm{N}}$, confirms the spin-parity $9/2^{+}$ with a $\nu g_{9/2}^{-1}$ shell-model configuration, in excellent agreement with the prediction from large scale shell-model theories. The magnetic mo…
Evolution of nuclear structure in neutron-rich odd-Zn isotopes and isomers
Collinear laser spectroscopy was performed on Zn (Z=30) isotopes at ISOLDE, CERN. The study of hyperfine spectra of nuclei across the Zn isotopic chain, N=33–49, allowed the measurement of nuclear spins for the ground and isomeric states in odd-A neutron-rich nuclei up to N=50. Exactly one long-lived (&
Laser spectroscopy of the ground-state hyperfine structure in H-like and Li-like bismuth
The LIBELLE experiment performed at the experimental storage ring (ESR) at the GSI Helmholtz Center in Darmstadt aims for the determination of the ground state hyperfine (HFS) transitions and lifetimes in hydrogen-like (209Bi82+) and lithium-like (209Bi80+) bismuth. The study of HFS transitions in highly charged ions enables precision tests of QED in extreme electric and magnetic fields otherwise not attainable in laboratory experiments. While the HFS transition in H-like bismuth was already observed in earlier experiments at the ESR, the LIBELLE experiment succeeded for the first time to measure the HFS transition in Li-like bismuth in a laser spectroscopy experiment.
Lifetimes and g-factors of the HFS states in H-like and Li-like bismuth
The LIBELLE experiment performed at the experimental storage ring (ESR) at the GSI Helmholtz Center for Heavy Ion Research in Darmstadt, Germany, has successfully determined the ground state hyperfine (HFS) splittings in hydrogen-like ($^{209}\rm{Bi}^{82+}$) and lithium-like ($^{209}\rm{Bi}^{80+}$) bismuth. The study of HFS transitions in highly charged ions enables precision tests of QED in extreme electric and magnetic fields otherwise not attainable in laboratory experiments. Besides the transition wavelengths the time resolved detection of fluorescence photons following the excitation of the ions by a pulsed laser system also allows to extract lifetimes of the upper HFS levels and g-fac…
High-resolution laser spectroscopy of Al27–32
Hyperfine spectra of $^\text{27-32}$Al ($Z=13$) have been measured at the ISOLDE-CERN facility via collinear laser spectroscopy using the $3s^23p\ ^2\text{P}^\text{o} _{3/2}\rightarrow 3s^24s\ ^2\text{S}_{1/2}$ atomic transition. For the first time, mean-square charge radii of radioactive aluminum isotopes have been determined alongside the previously unknown magnetic dipole moment of $^{29}$Al and electric quadrupole moments of $^{29,30}$Al. A potentially reduced charge radius at $N=19$ may suggest an effect of the $N=20$ shell closure, which is visible in the Al chain, contrary to other isotopic chains in the $sd$ shell. The experimental results are compared to theoretical calculations in…
An improved value for the hyperfine splitting of hydrogen-like209Bi82+
We report an improved measurement of the hyperfine splitting in hydrogen-like bismuth (209Bi82+) at the experimental storage ring ESR at GSI by laser spectroscopy on a coasting beam. Accuracy was improved by about an order of magnitude compared to the first observation in 1994. The most important improvement is an in situ high voltage measurement at the electron cooler (EC) platform with an accuracy at the 10 ppm level. Furthermore, the space charge effect of the EC current on the ion velocity was determined with two independent techniques that provided consistent results. The result of nm provides an important reference value for experiments testing bound-state quantum electrodynamics in t…
Chlorine partitioning in the lowermost Arctic vortex during the cold winter 2015/2016
Activated chlorine compounds in the polar winter stratosphere drive catalytic cycles that deplete ozone and methane, whose abundances are highly relevant to the evolution of global climate. The present work introduces a novel dataset of in situ measurements of relevant chlorine species in the lowermost Arctic stratosphere from the aircraft mission POLSTRACC–GW-LCYCLE–SALSA during winter 2015/2016. The major stages of chemical evolution of the lower polar vortex are presented in a consistent series of high-resolution mass spectrometric observations of HCl and ClONO2. Simultaneous measurements of CFC-12 are used to derive total inorganic chlorine (Cly) and active chlorine (ClOx). The new data…
Hyperfine transition in209Bi80+—one step forward
The hyperfine transitions in lithium-like and hydrogen-like bismuth were remeasured by direct laser spectroscopy at the experimental storage ring. For this we have now employed a voltage divider which enabled us to monitor the electron cooler voltage in situ. This will improve the experimental accuracy by about one order of magnitude with respect to our previous measurement using the same technique.
Investigating the large deformation of the 5/2+ isomeric state in Zn73 : An indicator for triaxiality
Porous aerosol in degassing plumes of Mt. Etna and Mt. Stromboli
Abstract. Aerosols of the volcanic degassing plumes from Mt. Etna and Mt. Stromboli were probed with in situ instruments on board the Deutsches Zentrum für Luft- und Raumfahrt research aircraft Falcon during the contrail, volcano, and cirrus experiment CONCERT in September 2011. Aerosol properties were analyzed using angular scattering intensities and particle size distributions simultaneously measured with the Polar Nephelometer and the Forward Scattering Spectrometer probes (FSSP series 100 and 300), respectively. Aerosols of degassing plumes are characterized by low values of the asymmetry parameter (between 0.6 and 0.75); the effective diameter was within the range of 1.5–2.8 µm and the…
Isotope shift of40,42,44,48Ca in the 4s2S1/2→ 4p2P3/2transition
We report on improved isotope shift measurements of the isotopes 40,42,44,48Ca in the 4s2S1/2→4p2P3/2 transition using collinear laser spectroscopy. Accurately known isotope shifts in the 4s2S1/2→4p2P1/2 (D1) transition were used to calibrate the ion beam energy with an uncertainty of ΔU ≈ ± 0.25 V. The accuracy in the D2 transition was improved by a factor of 5–10. A King-plot analysis of the two transitions revealed that the field shift factor in the D2 line is about 1.8(13)% larger than in the D1 transition which is ascribed to relativistic contributions of the 4p1/2 wave function.
Laser Spectroscopy of Neutron-Rich Tin Isotopes: A Discontinuity in Charge Radii across the N=82 Shell Closure
Physical review letters 122(19), 192502 (2019). doi:10.1103/PhysRevLett.122.192502
TRIGA-SPEC: the prototype of MATS and LaSpec
Investigation of short-lived nuclei is a challenging task that MATS and LaSpec will handle at the low energy branch of Super-FRS at FAIR. The groundwork for those experiments is laid-out already today at the TRIGA-SPEC facility as a powerful development platform located at the research reactor TRIGA Mainz. The latest status, new developments and first results of commissioning runs are presented here.
Nuclear Moments of Germanium Isotopes around $N$ = 40
Collinear laser spectroscopy measurements were performed on $^{69,71,73}$Ge isotopes ($Z = 32$) at ISOLDE-CERN. The hyperfine structure of the $4s^2 4p^2 \, ^3P_1 \rightarrow 4s^2 4p 5s \, ^3P_1^o$ transition of the germanium atom was probed with laser light of 269 nm, produced by combining the frequency-mixing and frequency-doubling techniques. The hyperfine fields for both atomic levels were calculated using state-of-the-art atomic relativistic Fock-space coupled-cluster calculations. A new $^{73}$Ge quadrupole moment was determined from these calculations and previously measured precision hyperfine parameters, yielding $Q_{\rm s}$ = $-$0.198(4) b, in excellent agreement with the literatu…
High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED
Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209Bi82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron–nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209Bi82+,80+ with a precision that is improve…
Nuclear charge radii of 62−80Zn and their dependence on cross-shell proton excitations
Nuclear charge radii of 62−80Zn have been determined using collinear laser spectroscopy of bunched ion beams at CERN-ISOLDE. The subtle variations of observed charge radii, both within one isotope and along the full range of neutron numbers, are found to be well described in terms of the proton excitations across the Z=28 shell gap, as predicted by large-scale shell model calculations. It comprehensively explains the changes in isomer-to-ground state mean square charge radii of 69−79Zn, the inversion of the odd-even staggering around N=40 and the odd-even staggering systematics of the Zn charge radii. With two protons above Z=28, the observed charge radii of the Zn isotopic chain show a cum…
Investigating the large deformation of the 5/2(+) isomeric state in Zn-73: An indicator for triaxiality
Recently reported nuclear spins and moments of neutron-rich Zn isotopes measured at ISOLDE-CERN [C. Wraith et al., Phys. Lett. B 771, 385 (2017)PYLBAJ0370-269310.1016/j.physletb.2017.05.085] show an uncommon behavior of the isomeric state in Zn73. Additional details relating to the measurement and analysis of the Zn73m hyperfine structure are addressed here to further support its spin-parity assignment 5/2+ and to estimate its half-life. A systematic investigation of this 5/2+ isomer indicates that significant collectivity appears due to proton/neutron E2 excitations across the proton Z = 28 and neutron N = 50 shell gaps. This is confirmed by the good agreement of the observed quadrupole mo…
Charge radius of the short-lived $^{68}$Ni and correlation with the dipole polarizability
We present the first laser spectroscopic measurement of the neutron-rich nucleus $^{68}$Ni at the \mbox{$N=40$} subshell closure and extract its nuclear charge radius. Since this is the only short-lived isotope for which the dipole polarizability $\alpha_{\rm D}$ has been measured, the combination of these observables provides a benchmark for nuclear structure theory. We compare them to novel coupled-cluster calculations based on different chiral two- and three-nucleon interactions, for which a strong correlation between the charge radius and dipole polarizability is observed, similar to the stable nucleus $^{48}$Ca. Three-particle--three-hole correlations in coupled-cluster theory substant…
High-resolution laser spectroscopy of $^{27-32}$Al
Physical review / C 103(1), 014318 (2021). doi:10.1103/PhysRevC.103.014318
Charge Radius of the Short-Lived Ni68 and Correlation with the Dipole Polarizability
We present the first laser spectroscopic measurement of the neutron-rich nucleus ^{68}Ni at the N=40 subshell closure and extract its nuclear charge radius. Since this is the only short-lived isotope for which the dipole polarizability α_{D} has been measured, the combination of these observables provides a benchmark for nuclear structure theory. We compare them to novel coupled-cluster calculations based on different chiral two- and three-nucleon interactions, for which a strong correlation between the charge radius and dipole polarizability is observed, similar to the stable nucleus ^{48}Ca. Three-particle-three-hole correlations in coupled-cluster theory substantially improve the descrip…