0000000000004497
AUTHOR
Yuri A. Litvinov
Lifetimes and g-factors of the HFS states in H-like and Li-like bismuth
The LIBELLE experiment performed at the experimental storage ring (ESR) at the GSI Helmholtz Center for Heavy Ion Research in Darmstadt, Germany, has successfully determined the ground state hyperfine (HFS) splittings in hydrogen-like ($^{209}\rm{Bi}^{82+}$) and lithium-like ($^{209}\rm{Bi}^{80+}$) bismuth. The study of HFS transitions in highly charged ions enables precision tests of QED in extreme electric and magnetic fields otherwise not attainable in laboratory experiments. Besides the transition wavelengths the time resolved detection of fluorescence photons following the excitation of the ions by a pulsed laser system also allows to extract lifetimes of the upper HFS levels and g-fac…
An improved value for the hyperfine splitting of hydrogen-like209Bi82+
We report an improved measurement of the hyperfine splitting in hydrogen-like bismuth (209Bi82+) at the experimental storage ring ESR at GSI by laser spectroscopy on a coasting beam. Accuracy was improved by about an order of magnitude compared to the first observation in 1994. The most important improvement is an in situ high voltage measurement at the electron cooler (EC) platform with an accuracy at the 10 ppm level. Furthermore, the space charge effect of the EC current on the ion velocity was determined with two independent techniques that provided consistent results. The result of nm provides an important reference value for experiments testing bound-state quantum electrodynamics in t…
Precision mass measurements for nuclear astro- and neutrino physics
Nuclear masses are indispensable ingredients in numerous physics applications ranging from nuclear structure physics, where, e.g., the shell closures and nucleon correlation energies can be studied by accurate mass measurements, via the nuclear astrophysics, where the masses of nuclei far from the valley of β-stability determine the pathways of, e.g., rp-and r-processes of nucleosynthesis in stars, to tests of the standard model and fundamental interactions, where, e.g., the very-accurate masses of parent and superallowed β-decay daughter nuclei serve as one of inputs for the checking of the unitarity of the CKM quark-mixing matrix. In this review we focus on recent direct mass measurements…
Measurement of the92,93,94,100Mo(γ,n) reactions by Coulomb Dissociation
6th Nuclear Physics in Astrophysics Conference (NPA), Lisbon, Portugal, 19 May 2013 - 24 May 2013; Journal of physics / Conference Series 665, 012034 (2016). doi:10.1088/1742-6596/665/1/012034
Observation of the hyperfine transition in lithium-like bismuthBi20980+: Towards a test of QED in strong magnetic fields
We performed a laser spectroscopic determination of the $2s$ hyperfine splitting (HFS) of Li-like ${}^{209}{\text{Bi}}^{80+}$ and repeated the measurement of the $1s$ HFS of H-like ${}^{209}{\text{Bi}}^{82+}$. Both ion species were subsequently stored in the Experimental Storage Ring at the GSI Helmholtzzentrum f\"ur Schwerionenforschung Darmstadt and cooled with an electron cooler at a velocity of $\ensuremath{\approx}0.71\phantom{\rule{0.16em}{0ex}}c$. Pulsed laser excitation of the $M1$ hyperfine transition was performed in anticollinear and collinear geometry for ${\text{Bi}}^{82+}$ and ${\text{Bi}}^{80+}$, respectively, and observed by fluorescence detection. We obtain $\ensuremath{\De…
Laser spectroscopy measurement of the 2s-hyperfine splitting in lithium-like bismuth
We have recently reported on the first direct measurement of the $2s$ hyperfine transition in lithium-like bismuth (209Bi80+) at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. Combined with a new measurement of the $1s$ hyperfine splitting (HFS) in hydrogen-like (209Bi82+) the so-called specific difference ${\rm{\Delta }}^{\prime} E=-61.37(36)$ meV could be determined and was found to be in good agreement with its prediction from strong-field bound-state quantum electrodynamics. Here we report on additional investigations performed to estimate systematic uncertainties of these results and on details of the experimental setup. We show that the dominating uncertainty a…
First observation of the ground-state hyperfine transition in 209Bi80+
The long sought after ground-state hyperfine transition in lithium-like bismuth 209Bi80+ was observed for the first time using laser spectroscopy on relativistic ions in the experimental storage ring at the GSI Helmholtz Centre in Darmstadt. Combined with the transition in the corresponding hydrogen-like ion 209Bi82+, it will allow extraction of the specific difference between the two transitions that is unaffected by the magnetic moment distribution in the nucleus and can therefore provide a better test of bound-state QED in extremely strong magnetic fields.
SPARC experiments at the high-energy storage ring
The physics program of the SPARC collaboration at the Facility for Antiproton and Ion Research (FAIR) focuses on the study of collision phenomena in strong and even extreme electromagnetic fields and on the fundamental interactions between electrons and heavy nuclei up to bare uranium. Here we give a short overview on the challenging physics opportunities of the high-energy storage ring at FAIR for future experiments with heavy-ion beams at relativistic energies with particular emphasis on the basic beam properties to be expected.
High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED
Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209Bi82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron–nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209Bi82+,80+ with a precision that is improve…
Laser cooling of stored relativistic ion beams with large momentum spreads using a laser system with a wide scanning range
New results on laser cooling of stored, bunched, relativistic ion beams are presented. For the first time it has been possible to cool an ion beam with large momentum spread without initial electron cooling or scanning of the bunching frequency by using a single cw laser system.
First Observation of the Unbound NucleusNe15
We report on the first observation of the unbound proton-rich nucleus Ne-15. Its ground state and first excited state were populated in two-neutron knockout reactions from a beam of 500 MeV/u Ne-17. The Ne-15 ground state is found to be unbound by 2.522(66) MeV. The decay proceeds directly to O-13 with simultaneous two-proton emission. No evidence for sequential decay via the energetically allowed 2(-) and 1(-) states in F-14 is observed. The Ne-15 ground state is shown to have a strong configuration with two protons in the (sd) shell around O-13 with a 63(5)% (1s(1/2))(2) component.
β-decay and β-delayed Neutron Emission Measurements at GSI-FRS Beyond N=126, for r-process Nucleosynthesis
New measurements of very exotic nuclei in the neutron-rich region beyond N=126 have been performed at the GSI facility with the fragment separator (FRS). The aim of the experiment is to determine half-lives and β-delayed neutron emission branching ratios of isotopes of Hg, Tl and Pb in this region. This contribution summarizes final counting statistics for identification and for implantation, as well as the present status of the data analysis of the half-lives. In summary, isotopes of Pt, Au, Hg, Tl, Pb, Bi, Po, At, Rn and Fr were clearly identified and several of them (208-211Hg, 211-215Tl, 214-218Pb) were implanted with enough statistics to determine their half-lives. About half of them a…
Coulomb and nuclear excitations of narrow resonances in 17Ne
Physics letters / B 759, 200 - 205 (2016). doi:10.1016/j.physletb.2016.05.073
Investigation of the Dipole Response in Exotic Nuclei – Experiments at the LAND-R$^3$B Setup
We present experimental results on the electromagnetic excitation of neutron-rich nickel isotopes, making use of the (RB)-B-3-LAND setup at GSI. Exotic beams were produced at approximately 500 MeV/u and their reactions were studied in inverse kinematics. Integral cross sections for Ni-58 are discussed and compared to previous data, providing a validation of our experimental method. The El excitation-energy distribution of the unstable Ni-68 is presented as well, showing an excess in cross section in the 1n decay channel when compared only with a typical Giant Dipole Resonance.