0000000000004574

AUTHOR

Luca Settineri

0000-0002-5816-170x

Wear modelling in mild steel orthogonal cutting when using uncoated carbide tools

Abstract Wear prediction in machining has been recently studied by FEM although the use of numerical methods for such applications is still a very challenging research issue. In fact, wear phenomenon involves many aspects related to process mechanics which require a very accurate modelling. In other words, only a very punctual code set-up can help the researchers in order to obtain consistent results in FE analysis. The high relative velocity between chip and tool requires effective material models as well as friction modelling at the interface. Moreover the prediction of temperature distribution is another critical task; in the paper some different procedures are discussed. Subsequently a …

research product

In-process tool-failure detection by means of AR models

The present paper proposes a cutting tool breaking and chipping detection system for continuous and interrupted cutting, based on the analysis of the cutting force componentsFx andFy. A multifactorial experimental design has been carried out, to take account of the variability of the force signal. An adaptive signal processing algorithm is proposed, which detects catastrophic failure when at least one component deviates outside an estimated oscillation band for a time duration longer than a prefixed interval. The algorithm has been implemented on a four-microprocessor transputer board. Several tests confirmed the validity of the approach for detecting breaking and chipping phenomena in a fe…

research product

Wear Analysis During Friction Stir Processing of A359+20%SiC MMC

Metal Matrix Composites (MMC) are very interesting materials for applications in the automotive and aerospace fields, since they combine the lightness of Aluminium with the strength of the ceramic reinforcement. These materials are very difficult to join and conventional welding techniques are not applicable, whereas solid-state welding techniques, like Friction Stir Welding (FSW), could be a solution. However very hard tool materials will need to be chosen in order to overcome the problem of heavy abrasive tool wear. In this work the wear behaviour of coated and uncoated steel tools has been investigated in the Friction Stir Processing of extruded bars in A359 + 20%SiC. AISI 1040 steel was…

research product

The Role of re-design for Additive Manufacturing on the Process Environmental Performance

Abstract At present, economic and technological design criteria for products and processes should be matched with the minimization of environmental impact objectives. Manufacturing, material production, and product design are strictly connected stages. The choice of a production system over another could result in significant material and energy/resource savings, particularly if the component has been properly designed for manufacturing. In this scenario, Additive Manufacturing, which has been identified as a potential disruptive technology, gained an increasing interest for the creation of complex metal parts. The paper focuses on the tools, based on the holistic modelling of additive and …

research product

On the finite element simulation of thermal phenomena in machining processes

Machining processes are frequently investigated by numerical simulations. Usually 2D analyses are carried out in order to reduce CPU times, considering orthogonal cutting conditions. In this way, the computational time sharply reduces and many process variables may be calculated (i.e. forces, chip morphology, shear angle, contact length). On the other hand, the analysis of thermal aspects involved in machining, for instance the temperature distribution reached in tool, still represents an open problem. Finite element codes are able to simulate a very short process time that is not sufficient to reach steady state conditions. Several approaches have been proposed to overcome this problem: in…

research product

Guidelines to compare additive and subtractive manufacturing approaches under the energy demand perspective

In order to characterise the environmental performance of additive manufacturing (AM) processes, comparative analyses are required. Different manufacturing approaches (such as additive and subtractive ones), besides adopting different equipment, use different kinds and amounts of material. Therefore, the material-related flow has to be followed throughout the entire product life. Differences in environmental impact arise at each step of the life cycle: material production, manufacturing, use, disposal, and transportation. A life cycle-based methodology able to take due account of all the factors of influence on the total energy demand for the production of metal components is given in this …

research product

A simple model for predicting the thermal flow on the tool in orthogonal cutting process

research product

A methodology for the environmental comparison of metal shaping technologies: an in-depth analysis on recycling related issues

The reduction of CO2 emissions is an urgent objective to pursue. The scientific and the industrial world have gathered such challenge, starting to find out energy- and resource-efficient manufacturing strategies. From the literature review, in the domain of environmental impact analysis of manufacturing processes, two relevant knowledge gaps can be spotted: (1) the metal forming processes (and, in particular, the bulk forming processes) are still not well documented, and (2) there is a lack of systematic and comparative studies on energy and material flows enabling the identification of environmentally-friendly manufacturing design strategies. This research offers a contribution to a better…

research product

Influence of Material-Related Aspects of Additive and Subtractive Ti-6Al-4V Manufacturing on Energy Demand and Carbon Dioxide Emissions

Summary The additive manufacturing of metal parts represents a promising process that could be used alongside traditional manufacturing methods. The research scenario in this field is still largely unexplored, as far as the technological solutions adopted to integrate different processes are concerned and in terms of environmental and economic impact assessment. In this article, an electron beam melting (EBM) process and a machining process have been analyzed and compared using a cradle-to-grave life cycle–based approach. The production of components made of the Ti-6Al-4V alloy has been assumed as a case study. The proposed methodology is able to account for all of the main factors of influ…

research product

On the effectiveness of Finite Element simulation of orthogonal cutting with particular reference to temperature prediction

Abstract Finite Element simulation of orthogonal cutting is nowadays assuming a large relevance; in fact a very large number of papers may be found out in technical literature on this topic. In recent years, numerical simulation was performed to investigate various phenomena such as chip segmentation, force prediction and tool wear. On the other hand, some drawbacks have to be highlighted; due to the geometrical and computational complexity of the updated-Lagrangian formulation mostly used in FE codes, a cutting time of only a few milliseconds can be effectively simulated. Therefore, steady-state thermal conditions are not reached and the simulation of the thermal phenomenon may be ineffect…

research product

A methodology for evaluating the influence of batch size and part geometry on the environmental performance of machining and forming processes

Metallic material processing plays a significant role in terms of global environmental impact. As a result, energy- and resource-efficient strategies in the metal shaping technology domain need to be identified urgently. Recently, the scientific world has been paying more and more attention to the environmental impact analysis of manufacturing processes. Despite this increased attention, the state of the art in the domain of environmental impact analysis of metal shaping processes is still characterized by gaps in knowledge and in methodologies. In particular, metal forming processes are still not well documented, in terms of their environmental impact, and there is a lack of systematic and…

research product

Assessment of Cost and Energy Requirements of Electron Beam Melting (EBM) and Machining Processes

Additive Manufacturing is under the spotlight as potential disruptive technology, particularly for the production of complex-shaped structural metallic components. However, the actual AM process capabilities present some limitations in achieving the strict part quality requirements imposed by the aerospace and automotive sectors. Therefore, the integration of AM and conventional manufacturing represents an emerging scenario to be investigated. In this paper, a pure machining process and a hybrid production route (based on EBM and finish machining) are compared. The influence of material usage-related factors on costs and energy demand is discussed. The results prove that, despite precise pr…

research product

Environmental Comparison between a Hot Extrusion Process and Conventional Machining Processes through a Life Cycle Assessment Approach

Nowadays manufacturing technologies have to be evaluated not only for the technical features they can provide to products, but also considering the environmental perspective as well. As long as the technological feasibility of a given process is guaranteed, processes minimizing resources and energy consumption have to be selected for manufacturing. With respect to this topic, the research studies in the domain of metal processing technologies predominantly focus on conventional material removal processes as milling and turning. Despite some exceptions, many other non-machining technologies, such as metal forming processes, are still not well documented in terms of their energy and resource …

research product

Subtractive versus mass conserving metal shaping technologies: an environmental impact comparison

The scientific studies in the domain of environmental sustainability of metal processing technologies predominantly focus on conventional material removal processes, as milling and turning. Despite some exceptions, many other non-machining technologies, such as metal forming processes, are still not well documented in terms of their energy and resource efficiency. Moreover, to properly evaluate the environmental impact of a given process, a standing-alone approach is no longer sufficient. In order to offer a valuable contribution in the domain of metal shaping sustainability, the present paper proposes a thorough methodology entailing to compare, from the environmental point of view, two tr…

research product

On the choice of tool material in friction stir welding of titanium alloys

research product

On the impact of recycling strategies on energy demand and CO2 emissions when manufacturing Al-based components

Abstract The industrial world is facing the challenge of reducing emissions by means of energy- and resource-efficient manufacturing strategies. In some cases, the exerted emissions and the energy demands related to conventional manufacturing processes are not as intensive as those required to extract and produce the raw materials of which the workpieces are made. Therefore, the consciousness of the impact of material usage and the eco-informed choice of the end-of-life scenarios are both needed in view of sustainable development. Aim of this paper is to offer a contribution to a better understanding of the environmental impact of forming and machining processes, for the production of Al-ba…

research product

Rivettatura autoperforante e clinching: due tecniche innovative

research product