0000000000005220
AUTHOR
Hermann Hartmann
Modeling techniques for analysing conformational transitions in hemocyanins by small-angle scattering of X-rays and neutrons.
Crystallization and Preliminary Analysis of Crystals of the 24-Meric Hemocyanin of the Emperor Scorpion (Pandinus imperator)
Hemocyanins are giant oxygen transport proteins found in the hemolymph of several invertebrate phyla. They constitute giant multimeric molecules whose size range up to that of cell organelles such as ribosomes or even small viruses. Oxygen is reversibly bound by hemocyanins at binuclear copper centers. Subunit interactions within the multisubunit hemocyanin complex lead to diverse allosteric effects such as the highest cooperativity for oxygen binding found in nature. Crystal structures of a native hemocyanin oligomer larger than a hexameric substructure have not been published until now. We report for the first time growth and preliminary analysis of crystals of the 24-meric hemocyanin (M(…
Small-Angle Scattering Techniques for Analyzing Conformational Transitions in Hemocyanins
Publisher Summary The precise delivery of oxygen from respiratory surfaces to the tissues is mediated by cooperative and allosterically regulated carrier proteins, such as hemoglobin or hemocyanin. To establish cooperativity, these proteins must be able to adopt different conformations. These conformations are characterized by different ligand affinities, which have their basis in different structures as is the case for the deoxy and oxy states of human hemoglobin. To understand the cooperative interaction of these molecules at the molecular level, the structures of these conformations must be resolved and the transitions between them must be monitored. Because of the nature of sample prepa…
Small-angle X-ray scattering reveals differences between the quaternary structures of oxygenated and deoxygenated tarantula hemocyanin
Small-angle X-ray scattering (SAXS) curves have been recorded for the oxygenated and deoxygenated states of the 4 x 6-meric hemocyanin from the tarantula Eurypelma californicum. A comparison of the curves shows that the quaternary structures of the two states are different by three criteria, which all indicate that the hemocyanin is less compact in the oxygenated compared to the deoxygenated form: (a) The radius of gyration is 8.65 +/- 0.05 nm for the deoxy- and 8.80 +/- 0.05 nm for the oxy-form. (b) The maximum particle dimension amounts to 25.0 +/- 0.5 nm for the deoxy- and to 27.0 +/- 0.5 nm for the oxy-form. (c) A dip in the intramolecular distance distribution function p(r) is more pro…
Small-angle neutron scattering reveals an oxygen-dependent conformational change of the immunogen keyhole limpet hemocyanin type 1 (KLH1).
The respiratory protein of the keyhole limpet, Megathura crenulata, the hemocyanin (KLH), commonly used as an immunogen, binds oxygen cooperatively, which implies the existence of different conformations. For the first time, two different conformations of KLH1 were detected upon oxygenation, a deoxy and an oxy state, using small-angle neutron scattering. Rearrangements in the quaternary structure of KLH1 were predicted from the different radii of gyration and the shifts of the minima and maxima in the scattering curves. Upon oxygenation, KLH1 becomes smaller and more compact. Model reconstruction of KLH1 indicates a hollow cylinder with two rings located close to both ends, which move sligh…
Small-angle X-ray Scattering-based Three-dimensional Reconstruction of the Immunogen KLH1 Reveals Different Oxygen-dependent Conformations
For decades the respiratory protein keyhole limpet hemocyanin (KLH1) from the marine gastropod Megathura crenulata has been used widely as a potent immunostimulant, useful hapten carrier, and valuable agent in the treatment of bladder carcinoma. Although much information on the immunological properties of KLH1 is available, biochemical and structural data are still incomplete. Small-angle x-ray scattering revealed the existence of two conformations, an oxy state being slightly more compact than the deoxy state. Based on small-angle scattering curves, a newly developed Monte Carlo algorithm delivered a surface representation of proteins. The massive changes of the surfaces of reconstructed d…
Polyphenoloxidase from Riesling and Dornfelder wine grapes (Vitis vinifera) is a tyrosinase.
Abstract Polyphenoloxidases (PPO) of the type-3 copper protein family are considered to be catecholoxidases catalyzing the oxidation of o-diphenols to their corresponding quinones. PPO from Grenache grapes has recently been reported to display only diphenolase activity. In contrast, we have characterized PPOs from Dornfelder and Riesling grapes which display both monophenolase and diphenolase activity. Ultracentrifugation and size exclusion chromatography indicated that both PPOs occur as monomers with Mr of about 38 kDa. Non-reducing SDS–PAGE shows two bands of about 38 kDa exhibiting strong activity. Remarkably, three bands up to 60 kDa displayed only very weak PPO activity, supporting th…
The Allosteric Effector l-Lactate Induces a Conformational Change of 2×6-meric Lobster Hemocyanin in the Oxy State as Revealed by Small Angle X-ray Scattering
Abstract Hemocyanins are multisubunit respiratory proteins found in many invertebrates. They bind oxygen highly cooperatively. However, not much is known about the structural basis of this behavior. We studied the influence of the physiological allosteric effectorl-lactate on the oxygenated quaternary structure of the 2×6-meric hemocyanin from the lobster Homarus americanus employing small angle x-ray scattering (SAXS). The presence of 20 mm l-lactate resulted in different scattering curves compared with those obtained in the absence of l-lactate. The distance distribution functionsp(r) indicated a more compact molecule in presence ofl-lactate, which is also reflected in a reduction of the …
Engineering of a bacterial tyrosinase for improved catalytic efficiency towards D-tyrosine using random and site directed mutagenesis approaches
The tyrosinase gene from Ralstonia solanacearum (GenBank NP518458) was subjected to random mutagenesis resulting in tyrosinase variants (RVC10 and RV145) with up to 3.2-fold improvement in kcat, 5.2-fold lower Km and 16-fold improvement in catalytic efficiency for D-tyrosine. Based on RVC10 and RV145 mutated sequences, single mutation variants were generated with all variants showing increased kcat for D-tyrosine compared to the wild type (WT). All single mutation variants based on RV145 had a higher kcat and Km value compared to the RV145 and thus the combination of four mutations in RV145 was antagonistic for turnover, but synergistic for affinity of the enzyme for D-tyrosine. Single muta…
The hydration shell of myoglobin.
The space in the unit cell of a metmyoglobin crystal not occupied by myoglobin atoms was filled with water using Monte Carlo calculations. Independent calculations with different amounts of water have been performed. Structure factors were calculated using the water coordinates thus obtained and the known coordinates of the myoglobin atoms. A comparison with experimental structure factors showed that both the low and the high resolution regime could be well reproduced with 814 Monte Carlo water molecules per unit cell with a B-value of 50 A2. The Monte Carlo water molecules yield a smaller standard R-value (0.166) than using a homogeneous electron density for the simulation of the crystal w…
Incorporation of mRNA in Lamellar Lipid Matrices for Parenteral Administration
Molecular pharmaceutics 15(2), 642 - 651 (2018). doi:10.1021/acs.molpharmaceut.7b01022
All hierarchical levels are involved in conformational transitions of the 4×6-meric tarantula hemocyanin upon oxygenation
The respiratory protein of the tarantula Eurypelma californicum is a 4 x 6-meric hemocyanin that binds oxygen with high cooperativity. This requires the existence of different conformations which have been confirmed by small angle X-ray scattering (SAXS). Here we present reconstructed 3D-models of the oxy- and deoxy-forms of tarantula hemocyanins, as obtained by fitting small angle X-rays scattering curves on the basis of known X-ray structures and electron microscopy of related hemocyanins. For the first time, the involvement of movements at all levels of the quaternary structure was confirmed for an arthropod hemocyanin upon oxygenation. The two identical 2 x 6-meric half-molecules of the…