0000000000005419

AUTHOR

Xenia De La Ossa

showing 1 related works from this author

Lines on the Dwork pencil of quintic threefolds

2012

We present an explicit parametrization of the families of lines of the Dwork pencil of quintic threefolds. This gives rise to isomorphic curves which parametrize the lines. These curves are 125:1 covers of certain genus six curves. These genus six curves are first presented as curves in P^1*P^1 that have three nodes. It is natural to blow up P^1*P^1 in the three points corresponding to the nodes in order to produce smooth curves. The result of blowing up P^1*P^1 in three points is the quintic del Pezzo surface dP_5, whose automorphism group is the permutation group S_5, which is also a symmetry of the pair of genus six curves. The subgroup A_5, of even permutations, is an automorphism of ea…

High Energy Physics - TheoryConifoldDel Pezzo surfaceGeneral MathematicsFOS: Physical sciencesGeneral Physics and AstronomyParity of a permutationGeometryPermutation groupAutomorphismQuintic functionBlowing upCombinatoricsMathematics - Algebraic GeometryMathematics::Algebraic GeometryHigh Energy Physics - Theory (hep-th)FOS: MathematicsAlgebraic Geometry (math.AG)Pencil (mathematics)MathematicsAdvances in Theoretical and Mathematical Physics
researchProduct