0000000000005420

AUTHOR

Bert Van Geemen

Quotients of Fermat curves and a Hecke character

AbstractWe explicitly identify infinitely many curves which are quotients of Fermat curves. We show that some of these have simple Jacobians with complex multiplication by a non-cyclotomic field. For a particular case we determine the local zeta functions with two independent methods. The first uses Jacobi sums and the second applies the general theory of complex multiplication, we verify that both methods give the same result.

research product

Lines on the Dwork pencil of quintic threefolds

We present an explicit parametrization of the families of lines of the Dwork pencil of quintic threefolds. This gives rise to isomorphic curves which parametrize the lines. These curves are 125:1 covers of certain genus six curves. These genus six curves are first presented as curves in P^1*P^1 that have three nodes. It is natural to blow up P^1*P^1 in the three points corresponding to the nodes in order to produce smooth curves. The result of blowing up P^1*P^1 in three points is the quintic del Pezzo surface dP_5, whose automorphism group is the permutation group S_5, which is also a symmetry of the pair of genus six curves. The subgroup A_5, of even permutations, is an automorphism of ea…

research product

Mirror quintics, discrete symmetries and Shioda maps

In a recent paper, Doran, Greene and Judes considered one parameter families of quintic threefolds with finite symmetry groups. A surprising result was that each of these six families has the same Picard Fuchs equation associated to the holomorphic 3-form. In this paper we give an easy argument, involving the family of Mirror Quintics, which implies this result. Using a construction due to Shioda, we also relate certain quotients of these one parameter families to the family of Mirror Quintics. Our constructions generalize to degree n Calabi Yau varieties in (n-1)-dimensional projective space.

research product