0000000000005928

AUTHOR

L. I. Minter

Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN

We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic end point at 18.57 keV gives an effective neutrino mass square value of (−1.0−1.1+0.9) eV2. From this, we derive an upper limit of 1.1 eV (90% confidence level) on the absolute mass scale of neutrinos. This value coincides with the KATRIN sensitivity. It improves upon previous mass limits from kinematic measurements by almost a …

research product

Beta Decay of Molecular Tritium

The beta decay of tritium in the form of molecular TT is the basis of sensitive experiments to measure neutrino mass. The final-state electronic, vibrational, and rotational excitations modify the beta spectrum significantly, and are obtained from theory. We report measurements of the branching ratios to specific ionization states for the isotopolog HT. Two earlier, concordant measurements gave branching ratios of HT to the bound HHe$^+$ ion of 89.5% and 93.2%, in sharp disagreement with the theoretical prediction of 55-57%, raising concerns about the theory's reliability in neutrino mass experiments. Our result, 56.5(6)%, is compatible with the theoretical expectation and disagrees strongl…

research product