0000000000006064

AUTHOR

Serena Fagnocchi

Nonlocal density correlations as a signature of Hawking radiation from acoustic black holes

We have used the analogy between gravitational systems and nonhomogeneous fluid flows to calculate the density-density correlation function of an atomic Bose-Einstein condensate in the presence of an acoustic black hole. The emission of correlated pairs of phonons by Hawking-like process results into a peculiar long-range density correlation. Quantitative estimations of the effect are provided for realistic experimental configurations.

research product

Backreaction in Acoustic Black Holes

The backreaction equations for the linearized quantum fluctuations in an acoustic black hole are given. The solution near the horizon, obtained within a dimensional reduction, indicates that acoustic black holes, unlike Schwarzschild ones, get cooler as they radiate phonons. They show remarkable analogies with near-extremal Reissner-Nordstrom black holes.

research product

Numerical observation of Hawking radiation from acoustic black holes in atomic Bose–Einstein condensates

We report numerical evidence of Hawking emission of Bogoliubov phonons from a sonic horizon in a flowing one-dimensional atomic Bose-Einstein condensate. The presence of Hawking radiation is revealed from peculiar long-range patterns in the density-density correlation function of the gas. Quantitative agreement between our fully microscopic calculations and the prediction of analog models is obtained in the hydrodynamic limit. New features are predicted and the robustness of the Hawking signal against a finite temperature discussed.

research product

Quantum stress tensor for extreme 2D Reissner-Nordström black holes

Contrary to previous claims, it is shown that the expectation values of the quantum stress tensor for a massless scalar field propagating on a two-dimensional extreme Reissner-Nordstrom black hole are indeed regular on the horizon.

research product

Depletion in Bose-Einstein condensates using quantum field theory in curved space

5 pages.-- PACS nrs.: 03.75.Kk; 05.30.Jp; 04.62.+v; 04.70.Dy.-- ISI Article Identifier: 000246074600122.-- ArXiv pre-print available at: http://arxiv.org/abs/cond-mat/0610367

research product

QUANTUM EFFECTS IN ACOUSTIC BLACK HOLES: THE BACKREACTION.

We investigate the backreaction equations for an acoustic black hole formed in a Laval nozzle under the assumption that the motion of the fluid is one-dimensional. The solution in the near-horizon region shows that as phonons are (thermally) radiated the sonic horizon shrinks and the temperature decreases. This contrasts with the behaviour of Schwarzschild black holes, and is similar to what happens in the evaporation of (near-extremal) Reissner-Nordstrom black holes (i.e. infinite evaporation time). Finally, by appropriate boundary conditions the solution is extended in both the asymptotic regions of the nozzle.

research product