0000000000006136

AUTHOR

Gertrud Konrad

showing 6 related works from this author

The magnetic shielding for the neutron decay spectrometer aSPECT

2014

Abstract Many experiments in nuclear and neutron physics are confronted with the problem that they use a superconducting magnetic spectrometer which potentially affects other experiments by their stray magnetic field. The retardation spectrometer a SPECT consists, inter alia, of a superconducting magnet system that produces a strong longitudinal magnetic field of up to 6.2 T. In order not to disturb other experiments in the vicinity of a SPECT, we had to develop a magnetic field return yoke for the magnet system. While the return yoke must reduce the stray magnetic field, the internal magnetic field and its homogeneity should not be affected. As in many cases, the magnetic shielding for a S…

PhysicsNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsElectromagnetMagnetic energyDemagnetizing fieldForce between magnetsFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)law.inventionComputational physicsNuclear physicsMagnetizationlawMagnetElectromagnetic shieldingMagnetic pressureNuclear Experiment (nucl-ex)InstrumentationNuclear Experiment
researchProduct

The Proton Spectrum in Neutron Beta Decay: Latest Results with the aSPECT Spectrometer

2009

Abstract The purpose of the neutron decay spectrometer aSPECT is to determine the antineutrino electron angular correlation coefficient a with high precision. Latest measurements with aSPECT were performed during April/May 2008 at the Institut Laue-Langevin in Grenoble, France. In this paper we give a report on the experiment and the status of the ongoing data analysis.

PhysicsNuclear and High Energy PhysicsParticle physicsSpectrometerProtonCabibbo–Kobayashi–Maskawa matrixSpectrum (functional analysis)ElectronBeta decayPhysics::GeophysicsNuclear physicsAngular correlationNeutronNuclear ExperimentNuclear Physics A
researchProduct

Measuring the proton spectrum in neutron decay - latest results with aSPECT

2008

The retardation spectrometer aSPECT was built to measure the shape of the proton spectrum in free neutron decay with high precision. This allows us to determine the antineutrino electron angular correlation coefficient a. We aim for a precision more than one order of magnitude better than the present best value, which is Delta_a /a = 5%. In a recent beam time performed at the Institut Laue-Langevin during April / May 2008 we reached a statistical accuracy of about 2% per 24 hours measurement time. Several systematic effects were investigated experimentally. We expect the total relative uncertainty to be well below 5%.

PhysicsNuclear and High Energy PhysicsSpectrometerProtonCabibbo–Kobayashi–Maskawa matrixFOS: Physical sciencesElectronMeasure (mathematics)Nuclear physicsNeutronNuclear Experiment (nucl-ex)Nuclear ExperimentInstrumentationNuclear ExperimentOrder of magnitudeBeam (structure)
researchProduct

Neutron Decay with PERC: a Progress Report

2011

The PERC collaboration will perform high-precision measurements of angular correlations in neutron beta decay at the beam facility MEPHISTO of the Forschungs-Neutronenquelle Heinz Maier-Leibnitz in Munich, Germany. The new beam station PERC, a clean, bright, and versatile source of neutron decay products, is designed to improve the sensitivity of neutron decay studies by one order of magnitude. The charged decay products are collected by a strong longitudinal magnetic field directly from inside a neutron guide. This combination provides the highest phase space density of decay products. A magnetic mirror serves to perform precise cuts in phase space, reducing related systematic errors. The …

PhysicsHistoryProtonComputer Science ApplicationsEducationMagnetic fieldddc:Nuclear physicsMagnetic mirrorPhase spaceNeutronSpectroscopyBeam (structure)Order of magnitude
researchProduct

Design of the Magnet System of the Neutron Decay Facility PERC

2018

The PERC (Proton and Electron Radiation Channel) facility is currently under construction at the research reactor FRM II, Garching. It will serve as an intense and clean source of electrons and protons from neutron beta decay for precision studies. It aims to contribute to the determination of the Cabibbo-Kobayashi-Maskawa quark-mixing element $V_{ud}$ from neutron decay data and to search for new physics via new effective couplings. PERC's central component is a 12m long superconducting magnet system. It hosts an 8m long decay region in a uniform field. An additional high-field region selects the phase space of electrons and protons which can reach the detectors and largely improves system…

Physics - Instrumentation and Detectorsmagnet: designProtonQC1-999FOS: Physical sciencesSuperconducting magnetElectron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyelectron: particle sourcep: particle sourceNuclear physics0103 physical sciencesResearch reactorNeutron[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentPhysicsn: semileptonic decay010308 nuclear & particles physicsPhysicsInstrumentation and Detectors (physics.ins-det)magnet: superconductivityMagnetic fieldbeam opticsMagnetPhase spaceHigh Energy Physics::Experiment
researchProduct

Improved determination of the β−ν¯e angular correlation coefficient a in free neutron decay with the aSPECT spectrometer

2020

We report on a precise measurement of the electron-antineutrino angular correlation ($a$ coefficient) in free neutron beta-decay from the $a$SPECT experiment. The $a$ coefficient is inferred from the recoil energy spectrum of the protons which are detected in 4$\pi$ by the $a$SPECT spectrometer using magnetic adiabatic collimation with an electrostatic filter. Data are presented from a 100 days run at the Institut Laue Langevin in 2013. The sources of systematic errors are considered and included in the final result. We obtain $a = -0.10430(84)$ which is the most precise measurement of the neutron $a$ coefficient to date. From this, the ratio of axial-vector to vector coupling constants is …

PhysicsCoupling constantSpectrometer010308 nuclear & particles physicsSpectrum (functional analysis)Lambda01 natural sciencesCollimated lightFilter (large eddy simulation)0103 physical sciencesNeutronAtomic physicsNuclear Experiment010306 general physicsAdiabatic processPhysical Review C
researchProduct