0000000000006224
AUTHOR
R. Mann
Radioactive decay of 217Pa
The radioactive decay of 217Pa was investigated by means of α-γ-spectroscopy. Fine structure in the ground-state α-decay was established. Ambiguities in the fine structure of the α-decay of the previously known isomeric state could be clarified by α-γ-coincidence measurements. A previously unknown α-transition of Eα = (8306 ± 5) keV was detected and identified by means of delayed α-α- and α-γ-γ-coincidence measurements. A second isomeric state decaying by α-emission was not observed. The quality of the previously reported data of the α-decay fine structure of 217Th was improved.
Study of Superheavy Elements at the GSI-SHIP
β-delayed fission of192,194At
By using the recoil-fission correlation technique, the exotic process of beta-delayed fission ($\ensuremath{\beta}$DF) was unambiguously identified in the very neutron-deficient nuclei ${}^{192,194}$At in experiments at the velocity filter SHIP at Gesellschaft f\"ur Schwerionenforschung (GSI). The upper limits for the total kinetic energy release in fission of ${}^{192,194}$Po, being the daughter products of ${}^{192,194}$At after ${\ensuremath{\beta}}^{+}/EC$ decay, were estimated. The possibility of an unusually high $\ensuremath{\beta}$DF probability for ${}^{192}$At is discussed.
Decay studies of new isomeric states in 255No
The decay of excited states in 255No was investigated by applying the evaporation-residue–conversion-electron correlation technique. Two new isomeric states were observed in 255No together with the previously known one. Excitation energies of the isomeric states were estimated based on the energies of conversion electrons and γ rays from correlation chains. These results were in accord with theoretical calculations based on the mean-field models. A tentative decay scheme of isomeric states in 255No is proposed, and their Nilsson configurations are discussed. The energy decrease of the 11/2−[725] Nilsson level for heavy N=153 isotones as a function of increasing proton number is confirmed. p…
STUDIES OF SUPERHEAVY ELEMENTS AT SHIP
An overview of present experimental investigation of superheavy elements is given. The data are compared with theoretical descriptions. Results are reported from an experiment to confirm production of element 112 isotopes in irradiation of 238 UF 4 with 48 Ca . One spontaneous fission event was measured, which agrees with three events of previously measured data which had been assigned to the decay of 283112. However, more experimental work is needed in order to obtain an independent and unambiguous confirmation of previous results.
Decay study of 246Fm at SHIP
The decay chain of 246Fm has been investigated employing the SHIP separator at GSI Darmstadt. The 246Fm nuclei were produced via the 40Ar(208Pb, 2n)246Fm fusion-evaporation reaction. Improved values of the half-life, T 1/2 = 1.54(4) s, and of the spontaneous fission branching ratio, b SF = 0.068(6) , of 246Fm were obtained. The $ \beta^{+}_{}$ /electron capture branching ratio, b EC = 0.39(3) , of 242Cf was deduced. Possible structures of high-K states in 246Fm are discussed within the framework of a model calculation based on the Woods-Saxon potential.
The SMILETRAP (Stockholm-Mainz-Ion-LEvitation-TRAP) facility
Described in this paper is an experimental facility which measures atomic masses by using multiply charged ions from an electron beam ion source. The ions are injected into a Penning trap and the cyclotron frequencies measured. A precision of 2×10−9 has been reached using highly charged carbon, nitrogen, oxygen and neon.
Studies of SHE at SHIP
An overview of present experimental investigation of superheavy elements is given. The data are compared with theoretical descriptions. Results are reported from an experiment to confirm production of element 112 isotopes in irradiation of 238UF4 with 48Ca. One spontaneous fission event was measured, which agrees with three events of previously measured data which had been assigned to the decay of 283112. However, more experimental work is needed in order to obtain an independent and unambiguous confirmation of previous results.
SMILETRAP — Atomic mass measurements with ppb accuracy by using highly charged ions
In the SMILETRAP facility externally produced highly charged ions are captured in a Penning trap and utilized for high precision measurements of atomic masses. Accuracy tests on a ppb level have been performed, using highly charged carbon, oxygen and neon ions. In all cases hydrogen ions served as a reference for the calibration and monitoring of the magnetic field in the trap. Deviations smaller than 3 ppb from the expected results were found in mass measurements of the16O and20Ne atomic masses. The proton atomic mass, determined from the reference measurements on hydrogen ions, is in good agreement with the accepted value [1]. A direct mass measurement on the86Kr-isotope, using trapped86K…
New results on elements 111 and 112
Experiments on the synthesis and identification of the nuclei 272111 and 277112 were performed in order to confirm previous results. Three additional decay chains were measured in the reaction 64Ni + 209Bi →273111*. The study revealed considerably improved data on the decay chain originating from 272111. One additional chain was measured in the reaction 70Zn + 208Pb →278112*. The decay properties of the chain starting at 277112 are in excellent agreement with the second chain of the first experiment down to 265Sg, where the new chain ends by a previously unknown spontaneous-fission branch. A re-analysis of all the data on elements 110, 111, and 112 measured at GSI since 1994 (a total of 34 …
α-decay spectroscopy of the new isotopeAt192
Decay properties of the new neutron-deficient nuclide $^{192}\mathrm{At}$ have been studied in the complete fusion reaction $^{144}\mathrm{Sm}$($^{51}\mathrm{V}$,3n)$^{192}\mathrm{At}$ at the velocity filter SHIP. Two isomeric states with half-lives of 88(6) ms and 11.5(6) ms, respectively, and with complex $\ensuremath{\alpha}$-decay schemes were identified in $^{192}\mathrm{At}$. The decay pattern of one of the isomers suggests that it is based on the oblate-deformed $\ensuremath{\pi}2{f}_{7/2}\ensuremath{\bigotimes}\ensuremath{\nu}1{i}_{13/2}$ configuration, which confirms the expected onset of deformation in the At isotopes by approaching the neutron midshell at $N=104$.
Cross section systematics for the lightest Bi and Po nuclei produced in complete fusion reactions with heavy ions
The production of the very neutron-deficient nuclides $^{184\ensuremath{-}192}\mathrm{Bi}$ and $^{186\ensuremath{-}192}\mathrm{Po}$ in the vicinity of the neutron midshell at N = 104 has been studied by using heavy-ion-induced complete fusion reactions in a series of experiments at the velocity filter SHIP. The cross sections for the xn and pxn evaporation channels of the $^{46}\mathrm{Ti}$+$^{144}\mathrm{Sm}$$\ensuremath{\rightarrow}^{190}\mathrm{Po}{}^{*},$$^{98}\mathrm{Mo}$+$^{92}\mathrm{Mo}$$\ensuremath{\rightarrow}^{190}\mathrm{Po}{}^{*},$$^{50,52}\mathrm{Cr}$+$^{142}\mathrm{Nd}$$\ensuremath{\rightarrow}^{192,194}\mathrm{Po}{}^{*}$, and $^{94,95}\mathrm{Mo}$+$^{93}\mathrm{Nb}$$\ensurem…
α-decay of the new isotopePo187: Probing prolate structures beyond the neutron mid-shell at N = 104
The new neutron-deficient isotope $^{187}\mathrm{Po}$ has been identified in the complete fusion reaction $^{46}\mathrm{Ti}$+$^{144}\mathrm{Sm}$\ensuremath{\rightarrow}$^{187}\mathrm{Po}$+$3n$ at the velocity filter SHIP. Striking features of the $^{187}\mathrm{Po}$ \ensuremath{\alpha} decay are the strongly-hindered decay to the spherical ground state and unhindered decay to a surprisingly low-lying deformed excited state at 286 keV in the daughter nucleus $^{183}\mathrm{Pb}$. Based on the potential energy surface calculations, the $^{187}\mathrm{Po}$ ground state and the 286 keV excited state in $^{183}\mathrm{Pb}$ were interpreted as being of prolate origin. The systematic deviation of t…
The g-factor of the Electron Bound in Hydrogen-like Ions
The experimental determination of the magnetic moment (g-factor) of the electron bound in hydrogen-like ions represents a clean test of Quantum Electrodynamics, because it is not very sensitive to nuclear structure effects. Experimental data on the g-factor of the bound electron are available only for the hydrogen atom and the 4He+-ion. In this paper we present the first result for the g-factor of hydrogen-like carbon (12C5+). The experimental accuracy is high enough to verify the relativistic contribution to the g-factor on the 10-3 level.
Properties of heavy nuclei measured at the GSI SHIP
Abstract The nuclear shell model predicts that the next doubly magic shell-closure beyond 208 Pb is at a proton number Z = 114, 120, or 126 and at a neutron number N = 172 or 184. The outstanding aim of experimental investigations is the exploration of this region of spherical ‘Super-Heavy Elements’ (SHEs). The measured decay data reveal that for the heaviest elements, the dominant decay mode is α emission, not fission. Decay properties as well as reaction cross-sections are compared with results of theoretical investigations. Finally, plans are presented for the further development of the experimental set-up and the application of new techniques.At a higher sensitivity, the exploration of …
The SMILETRAP facility
The SMILETRAP experimental set-up, a Penning trap mass spectrometer for highly charged ions, is described. Capture and observation of cyclotron frequencies of externally produced highly charged ions, rapid interchange of investigated and reference ions and measurements of the rotational kinetic energies are demonstrated. Mass measurements utilizing different charge states and species to verify the consistency of the measurements are presented. A relative uncertainty of about 10−9 is attained in comparisons between highly charged carbon, nitrogen, oxygen, neon and the singly charged hydrogen molecule.
Status of the SHIPTRAP Project: A Capture and Storage Facility for Heavy Radionuclides from SHIP
The ion trap facility SHIPTRAP is being set up to deliver very clean and cool beams of singly-charged recoil ions produced at the SHIP velocity filter at GSI Darmstadt. SHIPTRAP consists of a gas cell for stopping and thermalizing high-energy recoil ions from SHIP, an rf ion guide for extraction of the ions from the gas cell, a linear rf trap for accumulation and bunching of the ions, and a Penning trap for isobaric purification. The progress in testing the rf ion guide is reported. A transmission of about 93(5)% was achieved.
Measurement of the gj factor of hydrogenic ions: a sensitive test of bound state QED
Thegj factor measurement of hydrogenic ions in the 1s ground state is with an expected accuracy of 10−7 a sensitive test of bound state QED. We expect to determine the deviations from the free electron value, caused by relativistic and radiative corrections, up to the orderα/4π(Zα)2 with an accuracy of 1%. As a first step, light ions like C5+ will be investigated. Later on, heavier hydrogenic ions up to U91+ will be examined using the accelerator facilities at GSI in Darmstadt.
On identification of separable kernel systems
An identification procedure for special separable kernel systems is presented. The suitable definition of adequateness of a signal leads to a systematic treatment of the choice of inputs for identification.