0000000000006308

AUTHOR

Ewa Gudowska-nowak

0000-0001-5604-094x

Tuning active Brownian motion with shot noise energy pulses

The main aim of this work is to explore the possibility of modeling the biological energy support mediated by absorption of ATP (adenosine triphosphate) as an energetic shot noise. We develop a general model with discrete input of energy pulses and study shot-noise-driven ratchets. We consider these ratchets as prototypes of Brownian motors driven by energy-rich ATP molecules. Our model is a stochastic machine able to acquire energy from the environment and convert it into kinetic energy of motion. We present characteristic features and demonstrate the possibility of tuning these motors by adapting the mean frequency of the discrete energy inputs, which are described as a special shot noise…

research product

Active Brownian Motion Models and Applications to Ratchets

We give an overview over recent studies on the model of Active Brownian Motion (ABM) coupled to reservoirs providing free energy which may be converted into kinetic energy of motion. First, we present an introduction to a general concept of active Brownian particles which are capable to take up energy from the source and transform part of it in order to perform various activities. In the second part of our presentation we consider applications of ABM to ratchet systems with different forms of differentiable potentials. Both analytical and numerical evaluations are discussed for three cases of sinusoidal, staircase-like and Mateos ratchet potentials, also with the additional loads modeled by…

research product

Co-occurrence of resonant activation and noise-enhanced stability in a model of cancer growth in the presence of immune response.

We investigate a stochastic version of a simple enzymatic reaction which follows the generic Michaelis-Menten kinetics. At sufficiently high concentrations of reacting species, the molecular fluctuations can be approximated as a realization of a Brownian dynamics for which the model reaction kinetics takes on the form of a stochastic differential equation. After eliminating a fast kinetics, the model can be rephrased into a form of a one-dimensional overdamped Langevin equation. We discuss physical aspects of environmental noises acting in such a reduced system, pointing out the possibility of coexistence of dynamical regimes where noise-enhanced stability and resonant activation phenomena …

research product

Statistical distributions for hamiltonian systems coupled to energy reservoirs and applications to molecular energy conversion

We study systems with Hamiltonian dynamics type coupled to reservoirs providing free energy which may be converted into acceleration. In the first part we introduce general concepts, like canonical dissipative systems and find exact solutions of associated Fokker–Planck equations that describe time evolutions of systems at hand. Next we analyze dynamics in ratchets with energy support which might be treated by perturbation theory around canonical dissipative systems. Finally we discuss possible applications of these ratchet systems to model the mechanism of biological energy conversion and molecular motors.

research product

Coexistence of resonant activation and noise enhanced stability in a model of tumor-host interaction: Statistics of extinction times

We study a Langevin equation derived from the Michaelis-Menten (MM) phenomenological scheme for catalysis accompanying a spontaneous replication of molecules, which may serve as a simple model of cell-mediated immune surveillance against cancer. We examine how two different and statistically independent sources of noise - dichotomous multiplicative noise and additive Gaussian white noise - influence the population's extinction time. This quantity is identified as the mean first passage time of the system across the zero population state. We observe the effects of resonant activation (RA) and noise-enhanced stability (NES) and we report the evidence for competitive co-occurrence of both phen…

research product

Monitoring noise-resonant effects in cancer growth influenced by external fluctuations and periodic treatment

In the paper we investigate a mathematical model describing the growth of tumor in the presence of immune response of a host organism. The dynamics of tumor and immune cells is based on the generic Michaelis-Menten kinetics depicting interaction and competition between the tumor and the immune system. The appropriate phenomenological equation modeling cell-mediated immune surveillance against cancer is of the predator-prey form and exhibits bistability within a given choice of the immune response-related parameters. Under the influence of weak external fluctuations, the model may be analyzed in terms of a stochastic differential equation bearing the form of an overdamped Langevin-like dynam…

research product

Stepping molecular motor amid Lévy white noise

We consider a model of a stepping molecular motor consisting of two connected heads. Directional motion of the stepper takes place along a one-dimensional track. Each head is subject to a periodic potential without spatial reflection symmetry. When the potential for one head is switched on, it is switched off for the other head. Additionally, the system is subject to the influence of symmetric, white Lévy noise that mimics the action of external random forcing. The stepper exhibits motion with a preferred direction which is examined by analyzing the median of the displacement of a midpoint between the positions of the two heads. We study the modified dynamics of the stepper by numerical sim…

research product