0000000000006616

AUTHOR

Olga Gil-medrano

0000-0002-0050-5960

showing 10 related works from this author

Geodesics on spaces of almost hermitian structures

1994

A natural metric on the space of all almost hermitian structures on a given manifold is investigated.

Hermitian symmetric spacePure mathematicsGeodesicGeneral MathematicsMathematical analysisSpace (mathematics)Fubini–Study metricHermitian matrixMetric (mathematics)Hermitian manifoldMathematics::Differential GeometryComplex manifoldMathematics::Symplectic GeometryMathematicsIsrael Journal of Mathematics
researchProduct

The Riemannian manifold of all Riemannian metrics

1991

In this paper we study the geometry of (M, G) by using the ideas developed in [Michor, 1980]. With that differentiable structure on M it is possible to use variational principles and so we start in section 2 by computing geodesics as the curves in M minimizing the energy functional. From the geodesic equation, the covariant derivative of the Levi-Civita connection can be obtained, and that provides a direct method for computing the curvature of the manifold. Christoffel symbol and curvature turn out to be pointwise in M and so, although the mappings involved in the definition of the Ricci tensor and the scalar curvature have no trace, in our case we can define the concepts of ”Ricci like cu…

Mathematics - Differential GeometryChristoffel symbolsGeneral MathematicsPrescribed scalar curvature problem58D17 58B20Mathematical analysisCurvatureLevi-Civita connectionFunctional Analysis (math.FA)Mathematics - Functional Analysissymbols.namesakeDifferential Geometry (math.DG)symbolsFOS: MathematicsSectional curvatureMathematics::Differential GeometryExponential map (Riemannian geometry)Ricci curvatureScalar curvatureMathematics
researchProduct

Unit Vector Fields that are Critical Points of the Volume and of the Energy: Characterization and Examples

2007

In the last few years, many works have appeared containing examples and general results on harmonicity and minimality of vector fields in different geometrical situations. This survey will be devoted to describe many of the known examples, as well as the general results from where they are obtained.

Energy characterizationUnit vectorMathematical analysisMathematics::Metric GeometryVector fieldRiemannian manifoldMathematicsVolume (compression)
researchProduct

Harmonicity and minimality of oriented distributions

2004

We consider an oriented distribution as a section of the corresponding Grassmann bundle and, by computing the tension of this map for conveniently chosen metrics, we obtain the conditions which the distribution must satisfy in order to be critical for the functionals related to the volume or the energy of the map. We show that the three-dimensional distribution ofS4m+3 tangent to the quaternionic Hopf fibration defines a harmonic map and a minimal immersion and we extend these results to more general situations coming from 3-Sasakian and quaternionic geometry.

General MathematicsBundleMathematical analysisImmersion (mathematics)Pushforward (differential)Harmonic mapTangentMathematics::Differential GeometryHopf fibrationExponential map (Riemannian geometry)MathematicsIsrael Journal of Mathematics
researchProduct

Relationship between volume and energy of vector fields

2001

Abstract A unified study of energy and volume functionals is presented here by determining the critical points of a functional that extends simultaneously energy and volume and that is defined on the product of the manifold of smooth maps C∞(M,N) times the manifold M of riemannian metrics on M. The restriction of this functional to different submanifolds of the space of vector fields X (M)× M is also considered, and used to study several functionals generalizing volume and energy or total bending of vector fields

volumeenergy and total bending of vector fieldscritical pointsMathematical analysisBendingVolume and energy functionalsSpace (mathematics)Manifoldvariational problemsComputational Theory and MathematicsVolume (thermodynamics)Product (mathematics)Fundamental vector fieldVector fieldGeometry and TopologyMathematics::Differential GeometryAnalysisEnergy (signal processing)MathematicsDifferential Geometry and its Applications
researchProduct

Volume, energy and generalized energy of unit vector fields on Berger spheres: stability of Hopf vector fields

2005

We study to what extent the known results concerning the behaviour of Hopf vector fields, with respect to volume, energy and generalized energy functionals, on the round sphere are still valid for the metrics obtained by performing the canonical variation of the Hopf fibration.

Curl (mathematics)Vector calculus identitiesSolenoidal vector fieldUnit vectorGeneral MathematicsMathematical analysisFundamental vector fieldVector fieldComplex lamellar vector fieldMathematicsVector potentialProceedings of the Royal Society of Edinburgh: Section A Mathematics
researchProduct

Connected sums and the infimum of the Yamabe functional

1986

Pure mathematicsRiemannian manifoldEssential supremum and essential infimumInfimum and supremumMathematicsScalar curvature
researchProduct

Spacelike energy of timelike unit vector fields on a Lorentzian manifold

2004

On a Lorentzian manifold, we define a new functional on the space of unit timelike vector fields given by the L2 norm of the restriction of the covariant derivative of the vector field to its orthogonal complement. This spacelike energy is related with the energy of the vector field as a map on the tangent bundle endowed with the Kaluza–Klein metric, but it is more adapted to the situation. We compute the first and second variation of the functional and we exhibit several examples of critical points on cosmological models as generalized Robertson–Walker spaces and Godel universe, on Einstein and contact manifolds and on Lorentzian Berger’s spheres. For these critical points we have also stu…

Tangent bundleMathematical analysisGeneral Physics and AstronomyOrthogonal complementCongruence (general relativity)ManifoldCovariant derivativeGeneral Relativity and Quantum CosmologyDifferential geometryUnit vectorVector fieldMathematics::Differential GeometryGeometry and TopologyMathematical PhysicsMathematicsMathematical physicsJournal of Geometry and Physics
researchProduct

Minimal unit vector fields

2002

We compute the first variation of the functional that assigns each unit vector field the volume of its image in the unit tangent bundle. It is shown that critical points are exactly those vector fields that determine a minimal immersion. We also find a necessary and sufficient condition that a vector field, defined in an open manifold, must fulfill to be minimal, and obtain a simpler equivalent condition when the vector field is Killing. The condition is fulfilled, in particular, by the characteristic vector field of a Sasakian manifold and by Hopf vector fields on spheres.

Curl (mathematics)Killing vector fieldsSolenoidal vector fieldVector operatorcritical pointsGeneral Mathematicsminimal vector fieldsMathematical analysis53C4253C20Hopf vector fields53C25Sasakian manifoldsKilling vector fieldUnit vectorFundamental vector fieldMathematics::Differential GeometryVolume of vector fieldsComplex lamellar vector fieldVector potentialMathematicsTohoku Mathematical Journal
researchProduct

Area minimizing projective planes on the projective space of dimension 3 with the Berger metric

2016

Abstract We show that, among the projective planes embedded into the real projective space R P 3 endowed with the Berger metric, those of least area are exactly the ones obtained by projection of the equatorial spheres of S 3 . This result generalizes a classical result for the projective spaces with the standard metric.

CollineationComplex projective space010102 general mathematicsMathematical analysisGeneral MedicineFubini–Study metric01 natural sciencesCombinatoricsReal projective line0103 physical sciencesProjective space010307 mathematical physicsProjective plane0101 mathematicsQuaternionic projective spacePencil (mathematics)MathematicsComptes Rendus Mathematique
researchProduct