0000000000006616

AUTHOR

Olga Gil-medrano

0000-0002-0050-5960

Geodesics on spaces of almost hermitian structures

A natural metric on the space of all almost hermitian structures on a given manifold is investigated.

research product

The Riemannian manifold of all Riemannian metrics

In this paper we study the geometry of (M, G) by using the ideas developed in [Michor, 1980]. With that differentiable structure on M it is possible to use variational principles and so we start in section 2 by computing geodesics as the curves in M minimizing the energy functional. From the geodesic equation, the covariant derivative of the Levi-Civita connection can be obtained, and that provides a direct method for computing the curvature of the manifold. Christoffel symbol and curvature turn out to be pointwise in M and so, although the mappings involved in the definition of the Ricci tensor and the scalar curvature have no trace, in our case we can define the concepts of ”Ricci like cu…

research product

Unit Vector Fields that are Critical Points of the Volume and of the Energy: Characterization and Examples

In the last few years, many works have appeared containing examples and general results on harmonicity and minimality of vector fields in different geometrical situations. This survey will be devoted to describe many of the known examples, as well as the general results from where they are obtained.

research product

Harmonicity and minimality of oriented distributions

We consider an oriented distribution as a section of the corresponding Grassmann bundle and, by computing the tension of this map for conveniently chosen metrics, we obtain the conditions which the distribution must satisfy in order to be critical for the functionals related to the volume or the energy of the map. We show that the three-dimensional distribution ofS4m+3 tangent to the quaternionic Hopf fibration defines a harmonic map and a minimal immersion and we extend these results to more general situations coming from 3-Sasakian and quaternionic geometry.

research product

Relationship between volume and energy of vector fields

Abstract A unified study of energy and volume functionals is presented here by determining the critical points of a functional that extends simultaneously energy and volume and that is defined on the product of the manifold of smooth maps C∞(M,N) times the manifold M of riemannian metrics on M. The restriction of this functional to different submanifolds of the space of vector fields X (M)× M is also considered, and used to study several functionals generalizing volume and energy or total bending of vector fields

research product

Volume, energy and generalized energy of unit vector fields on Berger spheres: stability of Hopf vector fields

We study to what extent the known results concerning the behaviour of Hopf vector fields, with respect to volume, energy and generalized energy functionals, on the round sphere are still valid for the metrics obtained by performing the canonical variation of the Hopf fibration.

research product

Connected sums and the infimum of the Yamabe functional

research product

Spacelike energy of timelike unit vector fields on a Lorentzian manifold

On a Lorentzian manifold, we define a new functional on the space of unit timelike vector fields given by the L2 norm of the restriction of the covariant derivative of the vector field to its orthogonal complement. This spacelike energy is related with the energy of the vector field as a map on the tangent bundle endowed with the Kaluza–Klein metric, but it is more adapted to the situation. We compute the first and second variation of the functional and we exhibit several examples of critical points on cosmological models as generalized Robertson–Walker spaces and Godel universe, on Einstein and contact manifolds and on Lorentzian Berger’s spheres. For these critical points we have also stu…

research product

Minimal unit vector fields

We compute the first variation of the functional that assigns each unit vector field the volume of its image in the unit tangent bundle. It is shown that critical points are exactly those vector fields that determine a minimal immersion. We also find a necessary and sufficient condition that a vector field, defined in an open manifold, must fulfill to be minimal, and obtain a simpler equivalent condition when the vector field is Killing. The condition is fulfilled, in particular, by the characteristic vector field of a Sasakian manifold and by Hopf vector fields on spheres.

research product

Area minimizing projective planes on the projective space of dimension 3 with the Berger metric

Abstract We show that, among the projective planes embedded into the real projective space R P 3 endowed with the Berger metric, those of least area are exactly the ones obtained by projection of the equatorial spheres of S 3 . This result generalizes a classical result for the projective spaces with the standard metric.

research product