0000000000006793

AUTHOR

Elena Añón

showing 4 related works from this author

Peptide-Capped Mesoporous Nanoparticles: Toward a more Efficient Internalization of Alendronate

2020

[EN] Osteoporosis is an illness which appears when the osteoblast/osteoclast activities are unbalanced taking place bone resorption (caused by osteoclasts) in higher extension than bone formation (induced by osteoblasts). Alendronate is one of the most used drugs for osteoporosis treatment despite its scarce bioavailability. Here we present the synthesis and characterization of mesoporous gated nanoparticles (two sets) for the controlled release of alendronate. The first set of nanoparticles (S1) were loaded with sulforhodamine B and capped with a peptide that could be selectively hydrolyzed by cathepsin K enzyme (overexpressed in osteoclasts). The second set (S2) was functionalized with am…

chemistry.chemical_classificationAlendronateChemistrymedia_common.quotation_subjectCathepsin KQUIMICA INORGANICANanoparticlePeptideGeneral ChemistryCombinatorial chemistryEnzymesQUIMICA ORGANICANanoparticlesOsteoporosisMesoporous materialInternalizationmedia_common
researchProduct

Self-Immolative Linkers as Caps for the Design of Gated Silica Mesoporous Supports

2016

A new hybrid material based on sulforhodamine-B dye-loaded silica mesoporous nanoparticles capped with a self-immolative gate has been synthesized and characterized. The gated material's controlled release behavior is monitored under different pH conditions. Under acidic and neutral conditions, a low level of dye release is detected. However, at slightly basic pH, significant dye release occurs owing to deprotonation of the phenol moiety in the capping molecule, which results in its disassembly.

Inorganic chemistryNanoparticlemesoporous materials010402 general chemistry01 natural sciencesCatalysisDeprotonationmolecular devicesQUIMICA ORGANICAPolymer chemistryQUIMICA ANALITICAMoietyMolecule010405 organic chemistryChemistryOrganic ChemistryQUIMICA INORGANICApH-responsive systemsGeneral ChemistryControlled release0104 chemical sciencesMesoporous organosilicasilicadyes/pigmentsHybrid materialMesoporous material
researchProduct

Frontispiece: Self-Immolative Linkers as Caps for the Design of Gated Silica Mesoporous Supports

2016

Mesoporous organosilicaChemistryOrganic ChemistryNanotechnologyGeneral ChemistryMesoporous materialCatalysisChemistry - A European Journal
researchProduct

Not always what closes best opens better: mesoporous nanoparticles capped with organic gates

2019

ABSTRACT Four types of calcined MCM-41 silica nanoparticles, loaded with dyes and capped with different gating ensembles are prepared and characterized. N1 and N2 nanoparticles are loaded with rhodamine 6G and capped with bulky poly(ethylene glycol) derivatives bearing ester groups (1 and 2). N3-N4 nanoparticles are loaded with sulforhodamine B and capped with self-immolative derivatives bearing ester moieties. In the absence of esterase enzyme negligible cargo release from N1, N3 and N4 nanoparticles is observed whereas a remarkable release for N2 is obtained most likely due to the formation of an irregular coating on the outer surface of the nanoparticles. In contrast, a marked delivery i…

Materials science102 Porous / Nanoporous / Nanostructured materialslcsh:BiotechnologyNanoparticle02 engineering and technologyGating010402 general chemistryEngineering and Structural Materials01 natural scienceslaw.inventionSilica nanoparticlesRhodamine 6Gchemistry.chemical_compoundlaw10 Engineering and Structural materialslcsh:TP248.13-248.65lcsh:TA401-492General Materials ScienceCalcinationgated nanodevices021001 nanoscience & nanotechnologyesterase controlled release0104 chemical sciencesChemical engineeringchemistrylcsh:Materials of engineering and construction. Mechanics of materials0210 nano-technologyMesoporous materialmesoporous nanoparticles
researchProduct