0000000000006960
AUTHOR
Martin F. Bachmann
Efficient homologous prime-boost strategies for T cell vaccination based on virus-like particles.
Induction of high frequencies of specific T cells by vaccination requires prime-boost regimens. To reach optimal immune responses, it is necessary to use different vectors for priming and boosting as e.g. DNA vaccination followed by boosting with a recombinant viral vector. Here, we show that vaccines based on virus-like particles (VLP) displaying peptide epitopes are equally effective to induce CTL responses if used in a homologous or heterologous prime-boost setting. Strikingly, high frequencies (>20% of CD8(+) cells) of protective CTL could be induced and maintained by weekly injection of VLP. Thus, the use of VLP may avoid the requirement for complicated heterologous prime-boost regi…
Regulation of IgG antibody responses by epitope density and CD21-mediated costimulation
Epitope density and organization have been shown to be important factors for B cell activation in many animal model systems. However, it has been difficult to separate the role of antigen organization from the role of local antigen concentrations because highly organized antigens are usually particulate whereas non-organized antigens are more soluble. Hence, highly organized and non-organized antigens may interact with different cell types and in different locations within lymphoid organs. In order to assess the role of antigen organization in regulating B cell responses, we immunized mice with highly repetitive virus-like particles, which exhibit different epitope densities covalently atta…
A molecular assembly system that renders antigens of choice highly repetitive for induction of protective B cell responses.
Virus like particles (VLPs) are known to induce potent B cell responses in the absence of adjuvants. Moreover, epitope-specific antibody responses may be induced by VLPs that contain peptides inserted in their immunodominant regions. However, due to steric problems, the size of the peptides capable of being incorporated into VLPs while still permitting capsid assembly, is rather limited. While peptides genetically fused to either the N- or C-terminus of VLPs present fewer assembly problems, the immune responses obtained against such epitopes are often limited, most likely because the epitopes are not optimally exposed. In addition, such particles may be less stable in vivo. Here, we show th…