0000000000007099

AUTHOR

L. Zito

On the Computational Aspects of a Symmetric Multidomain Boundary Element Method Approach for Elastoplastic Analysis

The symmetric boundary element method (SBEM) is applied to the elasto-plastic analysis of bodies subdivided into substructures. This methodology is based on the use of: a multidomain SBEM approach, for the evaluation of the elastic predictor; a return mapping algorithm based on the extremal paths theory, for the evaluation of inelastic quantities characterizing the plastic behaviour of each substructure; and a transformation of the domain inelastic integrals of each substructure into corresponding boundary integrals. The elastic analysis is performed by using the SBEM displacement approach, which has the advantage of creating system equations that only consist of nodal kinematical unknowns…

research product

Internal spring distribution for quasi brittle fracture via Symmetric Boundary Element Method

Abstract In this paper the symmetric boundary element formulation is applied to the fracture mechanics problems for quasi brittle materials . The basic aim of the present work is the development and implementation of two discrete cohesive zone models using Symmetric Galerkin multi-zone Boundary Elements Method . The non-linearity at the process zone of the crack will be simulated through a discrete distribution of nodal springs whose generalized (or weighted) stiffnesses are obtainable by the cohesive forces and relative displacements modelling. This goal is reached coherently with the constitutive relation σ − Δ u that describes the interaction between mechanical and kinematical quantities…

research product

Computational aspects in 2D SBEM analysis with domain inelastic actions

The Symmetric Boundary Element Method, applied to structures subjected to temperature and inelastic actions, shows singular domain integrals. In the present paper the strong singularity involved in the domain integrals of the stresses and tractions is removed, and by means of a limiting operation, this traction is evaluated on the boundary. First the weakly singular domain integral in the Somigliana Identity (S.I.) of the displacements is regularized and the singular integral is transformed into a boundary one using the Radial Integration Method; subsequently, using the differential operator applied to the displacement field, the S.I. of the tractions inside the body is obtained and through…

research product

Elastoplastic analysis by active macro-zones with linear kinematic hardening and von Mises materials.

In this paper a strategy to perform elastoplastic analysis with linear kinematic hardening for von Mises materials under plane strain conditions is shown. The proposed approach works with the Symmetric Galerkin Boundary Element Method applied to multidomain problems using a mixed variables approach, to obtain a more stringent solution. The elastoplastic analysis is carried out as the response to the loads and the plastic strains, the latter evaluated through the self-equilibrium stress matrix. This matrix is used both, in the predictor phase, for trial stress evaluation and, in the corrector phase, for solving a nonlinear global system which provides the elastoplastic solution of the active…

research product

The symmetric boundary element method for unilateral contact problems

Abstract On the basis of the boundary integral equation method, in its symmetric formulation, the frictionless unilateral contact between two elastic bodies has been studied. A boundary discretization by boundary elements leads to an algebraic formulation in the form of a linear complementarity problem. In this paper the process of contact or detachment is obtained through a step by step analysis by using generalized (weighted) quantities as the check elements: the detachment or the contact phenomenon may happen when the weighted traction or the weighted displacement is greater than the weighted cohesion or weighted minimum reference gap, respectively. The applications are performed by usin…

research product

Incremental elastoplastic analysis for active macro-zones

SUMMARY In this paper a strategy to perform incremental elastoplastic analysis using the symmetric Galerkin boundary element method for multidomain type problems is shown. The discretization of the body is performed through substructures, distinguishing the bem-elements characterizing the so-called active macro-zones, where the plastic consistency condition may be violated, and the macro-elements having elastic behaviour only. Incremental analysis uses the well-known concept of self-equilibrium stress field here shown in a discrete form through the introduction of the influence matrix (self-stress matrix). The nonlinear analysis does not use updating of the elastic response inside each plas…

research product

Lower bound limit analysis by bem: Convex optimization problem and incremental approach

Abstract The lower bound limit approach of the classical plasticity theory is rephrased using the Multidomain Symmetric Galerkin Boundary Element Method, under conditions of plane and initial strains, ideal plasticity and associated flow rule. The new formulation couples a multidomain procedure with nonlinear programming techniques and defines the self-equilibrium stress field by an equation involving all the substructures (bem-elements) of the discretized system. The analysis is performed in a canonical form as a convex optimization problem with quadratic constraints, in terms of discrete variables, and implemented using the Karnak.sGbem code coupled with the optimization toolbox by MatLab…

research product

Displacements approach with external variables only for multi-domain analysis via symmetric BEM

Abstract In the present paper a new displacement method, defined as external variables one, is proposed inside the multidomain symmetric Boundary Element formulation. This method is a natural evolution of the displacement approach with interface variables in the multidomain symmetric BEM analysis. Indeed, the strategy employed has the advantage of considering only the kinematical quantities of the free boundary nodes and the algebraic operators involved show symmetry and very small dimensions. The proposed approach is characterized by strong condensation of the mechanical and kinematical boundary nodes variables of the macro-elements. All the domain quantities, such as tractions and stresse…

research product

Active macro-zone approach for incremental elastoplastic-contact analysis

SUMMARY The symmetric boundary element method, based on the Galerkin hypotheses, has found an application in the nonlinear analysis of plasticity and in contact-detachment problems, but both dealt with separately. In this paper, we want to treat these complex phenomena together as a linear complementarity problem. A mixed variable multidomain approach is utilized in which the substructures are distinguished into macroelements, where elastic behavior is assumed, and bem-elements, where it is possible that plastic strains may occur. Elasticity equations are written for all the substructures, and regularity conditions in weighted (weak) form on the boundary sides and in the nodes (strong) betw…

research product