0000000000007181

AUTHOR

Abdelqader Zaben

0000-0002-8144-7810

showing 4 related works from this author

Deformation of flexible ferromagnetic filaments under a rotating magnetic field

2019

Research on magnetic particles dispersed in a fluid medium, actuated by a rotating magnetic field, is becoming increasingly active for both lab-on-chip and bio-sensing applications. In this study, we experimentally investigate the behaviour of ferromagnetic filaments in a rotating field. Filaments are synthesized by linking micron-sized ferromagnetic particles with DNA strands. The experiments were conducted under different magnetic field strengths, frequencies and filament sizes, and deformation of the filaments was registered via microscope and camera. The results obtained showed that the body deformation is larger for longer filaments and higher frequencies and lower for larger magnetic …

Materials scienceField (physics)FOS: Physical sciencesmacromolecular substances02 engineering and technologyCondensed Matter - Soft Condensed MatterDeformation (meteorology)01 natural sciencesQuantitative Biology::Subcellular ProcessesProtein filament0103 physical sciences010302 applied physicsRotating magnetic fieldMagnetic momentCondensed matter physicsFluid Dynamics (physics.flu-dyn)Physics - Fluid Dynamicsequipment and supplies021001 nanoscience & nanotechnologyCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsMagnetic fieldFerromagnetismSoft Condensed Matter (cond-mat.soft)Magnetic nanoparticles0210 nano-technologyhuman activitiesJournal of Magnetism and Magnetic Materials
researchProduct

3D motion of flexible ferromagnetic filaments under a rotating magnetic field.

2020

Ferromagnetic filaments in a rotating magnetic field are studied both numerically and experimentally. The filaments are made from micron-sized ferromagnetic particles linked with DNA strands. It is found that at low frequencies of the rotating field a filament rotates synchronously with the field and beyond a critical frequency it undergoes a transition to a three dimensional regime. In this regime the tips of the filament rotate synchronously with the field on circular trajectories in the plane parallel to the plane of the rotating field. The characteristics of this motion found numerically match the experimental data and allow us to obtain the physical properties of such filaments. We als…

PhysicsRotating magnetic fieldCondensed matter physicsField (physics)Plane (geometry)FOS: Physical sciences02 engineering and technologyGeneral ChemistryCondensed Matter - Soft Condensed Matter021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesRodQuantitative Biology::Cell BehaviorProtein filamentQuantitative Biology::Subcellular ProcessesFerromagnetismCritical frequency0103 physical sciencesSoft Condensed Matter (cond-mat.soft)010306 general physics0210 nano-technologyMixing (physics)Soft matter
researchProduct

Deformation of flexible ferromagnetic filaments under a rotating magnetic field

2020

This repository contains experimental data and images related to the publication: A. Zaben, G. Kitenbergs, A. Cēbers (2020) Deformation of flexible ferromagnetic filaments under a rotating magnetic field. Journal of Magnetism and Magnetic Materials, 499, 166233 https://doi.org/10.1016/j.jmmm.2019.166233 / https://arxiv.org/abs/1908.02604. Excel files are results named corresponding to figure number in the publication. Root file '1' is for experimental images used for Fig.3, 4 and 5; where either the length is constant having file names as the value of the field strength or named with length values with fixed field strength for different frequencies. The images are named as …

Flexible filamentRotating fieldMagnetic filamentFerromagnetic particles
researchProduct

3D motion of flexible ferromagnetic filaments under rotating magnetic field

2020

This repository contains experimental data and numerical results related to the publication: A. Zaben, G. Kitenbergs, A. Cēbers (2020), 3D motion of flexible ferromagnetic filaments under rotating magnetic field. Soft Matter, https://doi.org/10.1039/D0SM00403K / https://arxiv.org/abs/2003.03737. Figs_data.xlsx contains the data presented in the figures. Experimental_Data.rar contains experimental images used to obtain the results for Fig. 3 and 9. The files are named with the operating frequency, field strength and filament length. Numerical.rar contains numerical results used in Fig.6, 8 and 9. The files are named with Cm values. The results are in .dat files named with Cm values follo…

Flexible filamentRotating fieldMagnetic filamentFerromagnetic particles
researchProduct