Interactions and patterns between species diversity and genetic diversity
High maternal species density mediates unidirectional heterospecific matings inCalopteryxdamselflies
Hybridization is a well-known phenomenon, but there are still relatively few studies addressing the question of reproductive isolation between related sympatric animal species with largely overlapping ranges. Population density, relative abundance, and operational sex ratio (OSR) are among the factors known to have an influence on the frequency of heterospecific matings in sympatric populations. Here we had two aims. First, we used microsatellite markers and field observations to study the frequency of hybrids, and backcrosses, and the rate of heterospecific matings between two sympatric damselfly species Calopteryx splendens (Harris, 1780) and Calopteryx virgo (Linne, 1758). Second, we inv…
Global urban environmental change drives adaptation in white clover
Made available in DSpace on 2022-04-28T19:52:06Z (GMT). No. of bitstreams: 0 Previous issue date: 2022-03-18 Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied am…
Temperature-dependent mutational robustness can explain faster molecular evolution at warm temperatures, affecting speciation rate and global patterns of species diversity
Distribution of species across the Earth shows strong latitudinal and altitudinal gradients with the number of species decreasing with declining temperatures. While these patterns have been recognized for well over a century, the mechanisms generating and maintaining them have remained elusive. Here, we propose a mechanistic explanation for temperature-dependent rates of molecular evolution that can influence speciation rates and global biodiversity gradients. Our hypothesis is based on the effects of temperature and temperature-adaptation on stability of proteins and other catalytic biomolecules. First, due to the nature of physical forces between biomolecules and water, stability of biomo…
Direction and strength of selection by predators for the color of the aposematic wood tiger moth
Conventionally, predation is assumed to select for conspicuousness and uniformity of warning signals in aposematic (i.e., chemically defended and warning signaling) prey because this enhances predators' initial and learned avoidance. On the other hand, it has been suggested that both variation in the background where the signal is displayed as well as variation in predators' probability to attack defended prey may favor intermediate signals or relax selection for signal monomorphism. We studied the direction and strength of selection for the hind wing color (orange vs. red) of female Parasemia plantaginis moths. Birds found the moths aversive and avoided them by sight both in laboratory and…
Temperature-dependent mutational robustness can explain faster molecular evolution at warm temperatures, affecting speciation rate and global patterns of species diversity
Distribution of species across the Earth shows strong latitudinal and altitudinal gradients with the number of species decreasing with declining temperatures. While these patterns have been recognized for well over a century, the mechanisms generating and maintaining them have remained elusive. Here, we propose a mechanistic explanation for temperature-dependent rates of molecular evolution that can influence speciation rates and global biodiversity gradients. Our hypothesis is based on the effects of temperature and temperature-adaptation on stability of proteins and other catalytic biomolecules. First, due to the nature of physical forces between biomolecules and water, stability of biomo…
Conservation implications of species–genetic diversity correlations
Despite its importance for the long-term viability of populations and functioning of ecosystems, the genetic diversity of populations is seldom given explicit consideration in conservation prioritization. Research on the species–genetic diversity correlation (SGDC) suggests that species diversity within a community and intrapopulation genetic diversity are positively correlated, due to the parallel influences of environmental characteristics (area, connectivity, and environmental heterogeneity) on both levels of diversity. A positive locality scale SGDC (i.e. α-SGDC) thus provides potential for simultaneous conservation of both species diversity within a locality and intrapopulation genetic…
Complex plant quality—microbiota–population interactions modulate the response of a specialist herbivore to the defence of its host plant
Many specialist herbivores have evolved strategies to cope with plant defences, with gut microbiota potentially participating to such adaptations. In this study, we assessed whether the history of plant use (population origin) and microbiota may interact with plant defence adaptation. We tested whether microbiota enhance the performance of Melitaea cinxia larvae on their host plant, Plantago lanceolata and increase their ability to cope the defensive compounds, iridoid glycosides (IGs). The gut microbiota were significantly affected by both larval population origin and host plant IG level. Contrary to our prediction, impoverishing the microbiota with antibiotic treatment did not reduce larv…
Interspecific interactions influence contrasting spatial genetic structures in two closely related damselfly species
Spatial genetic structure (SGS) is largely determined by colonization history, landscape and ecological characteristics of the species. Therefore, sympatric and ecologically similar species are expected to exhibit similar SGSs, potentially enabling prediction of the SGS of one species from that of another. On the other hand, due to interspecific interactions, ecologically similar species could have different SGSs. We explored the SGSs of the closely related Calopteryx splendens and Calopteryx virgo within Finland and related the genetic patterns to characteristics of the sampling localities. We observed different SGSs for the two species. Genetic differentiation even within short distances …
Interspecific interactions influence contrasting spatial genetic structures in two closely related damselfly species
Spatial genetic structure (SGS) is largely determined by colonization history, landscape and ecological characteristics of the species. Therefore, sympatric and ecologically similar species are expected to exhibit similar SGSs, potentially enabling prediction of the SGS of one species from that of another. On the other hand, due to interspecific interactions, ecologically similar species could have different SGSs. We explored the SGSs of the closely related Calopteryx splendens and Calopteryx virgo within Finland and related the genetic patterns to characteristics of the sampling localities. We observed different SGSs for the two species. Genetic differentiation even within short distances …
The effect of male-male competition and ornament size on mean and variance of courtship intensity towards heterospecific and conspecific females
Discrimination between hetero- and conspecifics is the elementary choice an individual performs when searching for potential mates. The level of selectivity and strength of species discrimination is modified by variance in the quality of females, level of the male’s reproductive investment, mate search costs, and the competitive environment. The effect of the competitive environment on both species discrimination and conspecific mate choice has seldom been studied simultaneously. We experimentally manipulated territorial competition ofCalopteryx splendensdamselfly males in the wild, and asked two questions. First, does increased competition influence the territorial males’ responses towards…
Data from: Interspecific interactions influence contrasting spatial genetic structures in two closely related damselfly species
Spatial genetic structure (SGS) is largely determined by colonization history, landscape and ecological characteristics of the species. Therefore, sympatric and ecologically similar species are expected to exhibit similar SGSs, potentially enabling prediction of the SGS of one species from that of another. On the other hand, due to interspecific interactions, ecologically similar species could have different SGSs. We explored the SGSs of the closely related Calopteryx splendens and C. virgo within Finland and related the genetic patterns to characteristics of the sampling localities. We observed different SGSs for the two species. Genetic differentiation even within short distances in C. sp…